File size: 5,393 Bytes
10e9b7d
 
eccf8e4
3c4371f
c0b845d
 
10e9b7d
e80aab9
3db6293
e80aab9
c0b845d
 
 
31243f4
 
c0b845d
 
 
 
31243f4
c0b845d
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4371f
c0b845d
 
 
 
 
 
 
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
 
 
 
3c4371f
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
c0b845d
7d65c66
c0b845d
e80aab9
7d65c66
 
c0b845d
3c4371f
31243f4
 
 
c0b845d
31243f4
 
c0b845d
 
 
31243f4
c0b845d
 
31243f4
 
c0b845d
31243f4
c0b845d
 
 
 
 
e80aab9
c0b845d
e80aab9
7d65c66
e80aab9
 
31243f4
c0b845d
e80aab9
c0b845d
 
 
e80aab9
c0b845d
7d65c66
c0b845d
e80aab9
c0b845d
e80aab9
c0b845d
 
0ee0419
e514fd7
 
 
c0b845d
 
 
e514fd7
 
c0b845d
e514fd7
e80aab9
 
7e4a06b
31243f4
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
c0b845d
e80aab9
3c4371f
 
c0b845d
7d65c66
3c4371f
c0b845d
 
3c4371f
c0b845d
7d65c66
c0b845d
 
 
7d65c66
c0b845d
3c4371f
c0b845d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import gradio as gr
import requests
import pandas as pd
from transformers import pipeline
from typing import Optional

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Smart Agent Definition ---
from transformers import pipeline

class BasicAgent:
    def __init__(self):
        print("Loading advanced model pipeline...")
        # You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
        self.generator = pipeline("text2text-generation", model="google/flan-t5-large")

    def __call__(self, question: str) -> str:
        try:
            prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
            response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
            answer = response[0]["generated_text"].strip()
            return answer
        except Exception as e:
            print(f"Agent failed to answer question: {e}")
            return "ERROR"


# --- Submission Logic ---
def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
    space_id = os.getenv("SPACE_ID")
    if not profile:
        print("User not logged in.")
        return "Please login to Hugging Face with the button.", None

    username = profile.username.strip()
    print(f"User logged in: {username}")

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code link: {agent_code}")

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or not question_text:
            continue
        try:
            answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})

    if not answers_payload:
        return "No answers generated for submission.", pd.DataFrame(results_log)

    submission_data = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers_payload
    }

    print(f"Submitting {len(answers_payload)} answers...")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"βœ… Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
            f"Message: {result_data.get('message', 'No message')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"❌ Submission failed: {e}", pd.DataFrame(results_log)

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# πŸ€– Basic Agent Evaluation Runner")

    gr.Markdown(
        """
        **Instructions:**

        1. Clone this space and implement your agent logic.
        2. Log in with your Hugging Face account using the button below.
        3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.

        ---
        ⚠️ Note: The first run may take time depending on model and question count.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

# --- Run App ---
if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"βœ… SPACE_HOST: {space_host_startup}")
        print(f"Runtime URL: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️ SPACE_HOST not set.")

    if space_id_startup:
        print(f"βœ… SPACE_ID: {space_id_startup}")
        print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
    else:
        print("ℹ️ SPACE_ID not set.")

    print("-" * 80)
    print("Launching Gradio App...")
    demo.launch(debug=True, share=False)