File size: 5,150 Bytes
10e9b7d 6ca25ff 10e9b7d 6ca25ff 3c4371f 6ca25ff 10e9b7d 6ca25ff 31243f4 3c4371f 6ca25ff 7e4a06b 6ca25ff 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 6ca25ff 31243f4 6ca25ff 31243f4 3c4371f 31243f4 3c4371f 7d65c66 eccf8e4 6ca25ff 7d65c66 6ca25ff 31243f4 6ca25ff 31243f4 3c4371f 31243f4 6ca25ff e80aab9 6ca25ff 31243f4 0ee0419 e514fd7 6ca25ff e514fd7 6ca25ff e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 6ca25ff 7d65c66 e80aab9 31243f4 6ca25ff e80aab9 6ca25ff 7d65c66 3c4371f 6ca25ff 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 6ca25ff 7d65c66 6ca25ff 7d65c66 6ca25ff 7d65c66 6ca25ff 3c4371f 31243f4 6ca25ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import agent
import gradio as gr
import logic
import pandas as pd
from dotenv import load_dotenv
load_dotenv()
def run_and_submit_all(
profile: gr.OAuthProfile | None,
) -> tuple[str, pd.DataFrame | None]:
"""Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
Args:
profile: An optional gr.OAuthProfile object containing user information
if the user is logged in. If None, the user is not logged in.
Returns:
tuple[str, pd.DataFrame | None]: A tuple containing:
- A string representing the status of the run and submission process.
This could be a success message, an error message, or a message
indicating that no answers were produced.
- A pandas DataFrame containing the results log. This DataFrame will
be displayed in the Gradio interface. It can be None if an error
occurred before the agent was run.
"""
# 0. Get user details
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# 1. Instantiate Agent
try:
gaia_agent = agent.GaiaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
try:
questions_data = logic.fetch_all_questions()
except Exception as e:
return str(e), None
# 3. Run the Agent
results_log, answers_payload = logic.run_agent(gaia_agent, questions_data)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare & Submit Answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
print(
f"Agent finished. Submitting {len(answers_payload)} answers for user '"
f"{username}'..."
)
return logic.submit_answers(submission_data, results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as gaia_ui:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's
logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses
your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your
agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is
the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to
encourage you to develop your own, more robust solution. For instance for the
delay process of the submit button, a solution could be to cache the answers
and submit in a separate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all, inputs=None, outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/"
f"{space_id_startup}/tree/main"
)
else:
print(
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL "
"cannot be determined."
)
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
gaia_ui.launch(debug=True, share=True)
|