|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class GaiaAgent: |
|
def __init__(self): |
|
print("Initializing GaiaAgent with open-source model...") |
|
|
|
model_name = "google/flan-t5-large" |
|
auth_token = os.getenv("HF_TOKEN") |
|
|
|
self.device = 0 if torch.cuda.is_available() else -1 |
|
self.pipe = pipeline( |
|
"text2text-generation", |
|
model=model_name, |
|
tokenizer=model_name, |
|
token=auth_token, |
|
device=self.device |
|
) |
|
print("Model and tokenizer loaded.") |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question: {question[:60]}...") |
|
prompt = ( |
|
f"Answer the following question as accurately as possible.\n" |
|
f"Question: {question}\n" |
|
f"Answer:" |
|
) |
|
try: |
|
result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"] |
|
|
|
answer = result.strip().replace("Answer:", "").strip() |
|
print(f"Agent returned: {answer}") |
|
return answer |
|
except Exception as e: |
|
print(f"Error during model inference: {e}") |
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = GaiaAgent() |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
return f"Error decoding server response for questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.RequestException as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GAIA-Level Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Modify and extend the agent in the code section. |
|
2. Login with your Hugging Face account to submit answers. |
|
3. Click the button to run and submit. |
|
|
|
--- |
|
*This agent uses `google/flan-t5-large` from Hugging Face to answer questions.* |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST not found.") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
else: |
|
print("ℹ️ SPACE_ID not found.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
demo.launch(debug=True, share=False) |
|
|