samoye16's picture
Create agents.py
189c56c verified
raw
history blame
4.93 kB
import os
from dotenv import load_dotenv
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import create_client, Client
# Load environment variables
load_dotenv()
# ---- Basic Arithmetic Utilities ---- #
@tool
def multiply(a: int, b: int) -> int:
"""Returns the product of two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Returns the sum of two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Returns the difference between two integers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Performs division and handles zero division errors."""
if b == 0:
raise ValueError("Division by zero is undefined.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Returns the remainder after division."""
return a % b
# ---- Search Tools ---- #
@tool
def search_wikipedia(query: str) -> str:
"""Returns up to 2 documents related to a query from Wikipedia."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return {"wiki_results": "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}'
for doc in docs
)}
@tool
def search_web(query: str) -> str:
"""Fetches up to 3 web results using Tavily."""
results = TavilySearchResults(max_results=3).invoke(query=query)
return {"web_results": "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}'
for doc in results
)}
@tool
def search_arxiv(query: str) -> str:
"""Retrieves up to 3 papers related to the query from ArXiv."""
results = ArxivLoader(query=query, load_max_docs=3).load()
return {"arvix_results": "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}'
for doc in results
)}
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER]
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
- If you are asked for a number, don't use a comma in the number and avoid units like $ or % unless specified otherwise.
- If you are asked for a string, avoid using articles and abbreviations (e.g. for cities), and write digits in plain text unless specified otherwise.
- If you are asked for a comma-separated list, apply the above rules depending on whether each item is a number or string.
Your answer should start only with "Responce: ", followed by your result.""")
toolset = [
multiply,
add,
subtract,
divide,
modulus,
search_wikipedia,
search_web,
search_arxiv,
]
# ---- Graph Construction ---- #
def create_agent_flow(provider: str = "groq"):
"""Constructs the LangGraph conversational flow with tool support."""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0
))
else:
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.")
llm_toolchain = llm.bind_tools(toolset)
# Assistant node behavior
def assistant_node(state: MessagesState):
response = llm_toolchain.invoke(state["messages"])
return {"messages": [response]}
# Build the conversational graph
graph = StateGraph(MessagesState)
graph.add_node("assistant", assistant_node)
graph.add_node("tools", ToolNode(toolset))
graph.add_edge(START, "retriever")
graph.add_edge("retriever", "assistant")
graph.add_conditional_edges("assistant", tools_condition)
graph.add_edge("tools", "assistant")
return graph.compile()