Update app.py
Browse files
app.py
CHANGED
@@ -1,196 +1,80 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import requests
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
-
and displays the results.
|
26 |
-
"""
|
27 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
-
|
30 |
-
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
-
print(f"User logged in: {username}")
|
33 |
-
else:
|
34 |
-
print("User not logged in.")
|
35 |
-
return "Please Login to Hugging Face with the button.", None
|
36 |
-
|
37 |
-
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
-
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
agent = BasicAgent()
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
-
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
-
try:
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
-
|
90 |
-
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("
|
146 |
-
gr.
|
147 |
-
"""
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
-
gr.LoginButton()
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"β
SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"β
SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from duckduckgo_search import DDGS
|
3 |
+
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import re
|
8 |
+
import torch
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
# Pipelines
|
12 |
+
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
13 |
+
caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
14 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
15 |
+
|
16 |
+
# Utils
|
17 |
+
def search_web(query, max_results=3):
|
18 |
+
with DDGS() as ddgs:
|
19 |
+
results = ddgs.text(query, max_results=max_results)
|
20 |
+
return "\n\n".join([f"**{r['title']}**\n{r['body']}\n{r['href']}" for r in results])
|
21 |
+
|
22 |
+
def explain_image(img):
|
23 |
+
return caption_pipeline(img)[0]['generated_text']
|
24 |
+
|
25 |
+
def extract_text_from_url(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
+
res = requests.get(url, timeout=5)
|
28 |
+
soup = BeautifulSoup(res.text, 'html.parser')
|
29 |
+
# Remove scripts/styles
|
30 |
+
for script in soup(["script", "style"]): script.extract()
|
31 |
+
text = soup.get_text(separator=' ')
|
32 |
+
clean_text = re.sub(r'\s+', ' ', text)
|
33 |
+
return clean_text[:3000] # Limit to 3000 characters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
except Exception as e:
|
35 |
+
return f"Failed to extract text: {str(e)}"
|
36 |
+
|
37 |
+
def summarize_url(url):
|
38 |
+
text = extract_text_from_url(url)
|
39 |
+
if len(text) > 100:
|
40 |
+
summary = summarizer(text[:1024])[0]['summary_text']
|
41 |
+
return summary
|
42 |
+
return "Not enough text to summarize."
|
43 |
+
|
44 |
+
# Main Agent Function
|
45 |
+
def ai_agent(input_text, image=None, url=None):
|
46 |
+
results = []
|
47 |
+
|
48 |
+
# Process Image
|
49 |
+
if image:
|
50 |
+
results.append("πΌοΈ **Image Explanation:**\n" + explain_image(image))
|
51 |
+
|
52 |
+
# Process URL
|
53 |
+
if url:
|
54 |
+
if "youtube.com" in url or "youtu.be" in url:
|
55 |
+
results.append("πΉ **Video URL detected.** Currently only summaries of page content are available.")
|
56 |
+
results.append("π **Webpage Summary:**\n" + summarize_url(url))
|
57 |
+
|
58 |
+
# Web search for complex questions
|
59 |
+
if input_text:
|
60 |
+
if len(input_text.split()) > 10: # assume complex
|
61 |
+
web_results = search_web(input_text)
|
62 |
+
results.append("π **Web Search Results:**\n" + web_results)
|
63 |
+
else:
|
64 |
+
results.append("π§ **Answer:**\n" + search_web(input_text))
|
65 |
+
|
66 |
+
return "\n\n---\n\n".join(results)
|
67 |
+
|
68 |
+
# Gradio UI
|
69 |
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("## ππ§ Multi-Modal AI Agent (Web + Image + URL)")
|
71 |
+
with gr.Row():
|
72 |
+
input_text = gr.Textbox(label="Ask a Question", lines=2, placeholder="E.g. What are the latest AI trends?")
|
73 |
+
image = gr.Image(type="pil", label="Upload an Image (optional)")
|
74 |
+
url = gr.Textbox(label="Provide a URL (optional)", placeholder="https://example.com")
|
75 |
+
submit = gr.Button("Get Answer")
|
76 |
+
output = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
submit.click(fn=ai_agent, inputs=[input_text, image, url], outputs=output)
|
79 |
|
80 |
+
demo.launch()
|
|