import os import gradio as gr import requests import inspect import pandas as pd from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import torch # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Advanced GAIA-Ready Agent --- class GaiaAgent: def __init__(self): print("Initializing GaiaAgent with open-source model...") model_name = "google/flan-t5-large" # Good balance between size and reasoning quality auth_token = os.getenv("HF_TOKEN") self.device = 0 if torch.cuda.is_available() else -1 self.pipe = pipeline( "text2text-generation", model=model_name, tokenizer=model_name, token=auth_token, device=self.device ) print("Model and tokenizer loaded.") def __call__(self, question: str) -> str: print(f"Agent received question: {question[:60]}...") prompt = ( f"Answer the following question as accurately as possible.\n" f"Question: {question}\n" f"Answer:" ) try: result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"] # Ensure clean return without "Answer:" prefix answer = result.strip().replace("Answer:", "").strip() print(f"Agent returned: {answer}") return answer except Exception as e: print(f"Error during model inference: {e}") return f"AGENT ERROR: {e}" # --- Evaluation & Submission Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = GaiaAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: return f"Error decoding server response for questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.RequestException as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) except Exception as e: return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("# GAIA-Level Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Modify and extend the agent in the code section. 2. Login with your Hugging Face account to submit answers. 3. Click the button to run and submit. --- *This agent uses `google/flan-t5-large` from Hugging Face to answer questions.* """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST not found.") if space_id_startup: print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") else: print("ℹ️ SPACE_ID not found.") print("-"*(60 + len(" App Starting ")) + "\n") demo.launch(debug=True, share=False)