import os import gradio as gr import requests import pandas as pd from transformers import pipeline from typing import Optional # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Smart Agent Definition --- from transformers import pipeline class BasicAgent: def __init__(self): print("Loading advanced model pipeline...") # You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API) self.generator = pipeline("text2text-generation", model="google/flan-t5-large") def __call__(self, question: str) -> str: try: prompt = f"Answer the following question clearly and concisely:\n{question.strip()}" response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0) answer = response[0]["generated_text"].strip() return answer except Exception as e: print(f"Agent failed to answer question: {e}") return "ERROR" # --- Submission Logic --- def run_and_submit_all(profile: Optional[gr.OAuthProfile]): space_id = os.getenv("SPACE_ID") if not profile: print("User not logged in.") return "Please login to Hugging Face with the button.", None username = profile.username.strip() print(f"User logged in: {username}") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Agent code link: {agent_code}") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty.", None except Exception as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or not question_text: continue try: answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer}) except Exception as e: error_msg = f"AGENT ERROR: {e}" results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg}) if not answers_payload: return "No answers generated for submission.", pd.DataFrame(results_log) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } print(f"Submitting {len(answers_payload)} answers...") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"✅ Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n" f"Message: {result_data.get('message', 'No message')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"❌ Submission failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# 🤖 Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Clone this space and implement your agent logic. 2. Log in with your Hugging Face account using the button below. 3. Click **Run Evaluation & Submit All Answers** to test and submit your agent. --- âš ī¸ Note: The first run may take time depending on model and question count. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) # --- Run App --- if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST: {space_host_startup}") print(f"Runtime URL: https://{space_host_startup}.hf.space") else: print("â„šī¸ SPACE_HOST not set.") if space_id_startup: print(f"✅ SPACE_ID: {space_id_startup}") print(f"Repo: https://huggingface.co/spaces/{space_id_startup}") else: print("â„šī¸ SPACE_ID not set.") print("-" * 80) print("Launching Gradio App...") demo.launch(debug=True, share=False)