"""LangGraph Agent using Mistral""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from transformers import pipeline from langchain.embeddings.huggingface import HuggingFaceEmbeddings from supabase.client import Client, create_client load_dotenv() # Tools @tool def multiply(a: int, b: int) -> int: return a * b @tool def add(a: int, b: int) -> int: return a + b @tool def subtract(a: int, b: int) -> int: return a - b @tool def divide(a: int, b: int) -> float: if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: return a % b @tool def wiki_search(query: str) -> str: search_docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def web_search(query: str) -> str: search_docs = TavilySearchResults(max_results=3).invoke(query=query) return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def arvix_search(query: str) -> str: search_docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs]) tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] # Load system prompt with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # Vector store setup embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supabase: Client = create_client( os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY") ) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="documents", query_name="match_documents_langchain" ) # Mistral agent class MistralAgent: def __init__(self): self.generator = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1", device=0) print("Mistral model loaded.") def invoke(self, messages): question = messages[-1].content result = self.generator(question, max_length=300, do_sample=True)[0]["generated_text"] return HumanMessage(content=result.strip()) mistral_agent = MistralAgent() # LangGraph builder def build_graph(): def assistant(state: MessagesState): return {"messages": [mistral_agent.invoke(state["messages"])]} def retriever(state: MessagesState): similar = vector_store.similarity_search(state["messages"][-1].content) example = HumanMessage(content=f"Similar Q&A:\n\n{similar[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [example]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() # Run the agent def run_agent(question: str) -> str: graph = build_graph() messages = [HumanMessage(content=question)] result = graph.invoke({"messages": messages}) return result["messages"][-1].content.strip() if __name__ == "__main__": question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" answer = run_agent(question) print("ANSWER:", answer)