File size: 4,273 Bytes
8166792
 
 
 
 
4f0cfe1
8166792
 
661e202
0e6feb1
 
 
 
 
 
 
 
 
 
 
8166792
 
 
 
 
 
 
 
 
 
 
 
4f0cfe1
661e202
4f0cfe1
 
 
 
 
661e202
 
 
4f0cfe1
 
8166792
 
 
 
 
4f0cfe1
8166792
 
 
 
 
 
 
 
 
 
 
4f0cfe1
661e202
 
 
 
8166792
661e202
 
 
8166792
661e202
 
 
8166792
4f0cfe1
661e202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8166792
4f0cfe1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import cv2
import numpy as np
from ultralytics import YOLO
import random
import torch
import spaces

class ImageSegmenter:
    def __init__(self, model_type="yolov8s-seg") -> None:
    # Don't initialize CUDA here
    self.model_type = model_type
    self.is_show_bounding_boxes = True
    self.is_show_segmentation_boundary = False
    self.is_show_segmentation = False
    self.confidence_threshold = 0.5
    self.cls_clr = {}
    self.bb_thickness = 2
    self.bb_clr = (255, 0, 0)
    self.masks = {}
    self.model = None  # Model will be loaded in predict

    def get_cls_clr(self, cls_id):
        if cls_id in self.cls_clr:
            return self.cls_clr[cls_id]
        
        # gen rand color
        r = random.randint(50, 200)
        g = random.randint(50, 200)
        b = random.randint(50, 200)
        self.cls_clr[cls_id] = (r, g, b)
        return (r, g, b)

    @spaces.GPU(duration=30)  # Adjust duration based on your needs
    def predict(self, image):            
        # Load model if not loaded (will happen on first prediction)
        if self.model is None:
            self.model = YOLO('models/' + self.model_type + '.pt')
            self.model.to(self.device)

        # params
        objects_data = [] 
        image = image.copy()
        
        # Run prediction
        predictions = self.model.predict(image)

        cls_ids = predictions[0].boxes.cls.cpu().numpy()
        bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy()        
        cls_conf = predictions[0].boxes.conf.cpu().numpy()
        
        # segmentation
        if predictions[0].masks:
            seg_mask_boundary = predictions[0].masks.xy
            seg_mask = predictions[0].masks.data.cpu().numpy()  
        else:
            seg_mask_boundary, seg_mask = [], np.array([])    
        
        for id, cls in enumerate(cls_ids):
            cls_clr = self.get_cls_clr(cls)

            # draw filled segmentation region
            if seg_mask.any() and cls_conf[id] > self.confidence_threshold:
                self.masks[id] = seg_mask[id]
                
                if self.is_show_segmentation:
                    alpha = 0.8                

                    # converting the mask from 1 channel to 3 channels
                    colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
                    colored_mask = np.moveaxis(colored_mask, 0, -1)

                    # Resize the mask to match the image size, if necessary
                    if image.shape[:2] != seg_mask[id].shape[:2]:
                        colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))

                    # filling the masked area with class color
                    masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
                    image_overlay = masked.filled()                
                    image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)

                # draw bounding box with class name and score
                if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold:
                    (x1, y1, x2, y2) = bounding_boxes[id]
                    cls_name = self.model.names[cls]
                    cls_confidence = cls_conf[id]
                    disp_str = cls_name +' '+ str(round(cls_confidence, 2))
                    cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
                    cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1)
                    cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
                
                # draw segmentation boundary
                if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold:            
                    cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2)

                # object variables
                (x1, y1, x2, y2) = bounding_boxes[id]
                center = x1+(x2-x1)//2, y1+(y2-y1)//2
                objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr])

        return image, objects_data