Alessio Grancini
Update image_segmenter.py
908272b verified
raw
history blame
5.2 kB
import cv2
import numpy as np
from ultralytics import YOLO
import random
import spaces
import os
import torch
class ImageSegmenter:
def __init__(self, model_type="yolov8s-seg", device="cpu"):
self.device = device
self.model = YOLO(model_type).to(self.device)
self.is_show_bounding_boxes = True
self.is_show_segmentation_boundary = False
self.is_show_segmentation = False
self.confidence_threshold = 0.5
self.cls_clr = {}
self.bb_thickness = 2
self.bb_clr = (255, 0, 0)
self.masks = {}
self.model = None
# Ensure model directory exists
os.makedirs('models', exist_ok=True)
# Check if model file exists, if not download it
model_path = os.path.join('models', f'{model_type}.pt')
if not os.path.exists(model_path):
print(f"Downloading {model_type} model...")
self.model = YOLO(model_type)
self.model.export()
print("Model downloaded successfully")
def get_cls_clr(self, cls_id):
if cls_id in self.cls_clr:
return self.cls_clr[cls_id]
r = random.randint(50, 200)
g = random.randint(50, 200)
b = random.randint(50, 200)
self.cls_clr[cls_id] = (r, g, b)
return (r, g, b)
@spaces.GPU
def predict(self, image):
try:
# Initialize model if needed
if self.model is None:
print("Loading YOLO model...")
model_path = os.path.join('models', f'{self.model_type}.pt')
# Force CPU mode for YOLO initialization
self.model = YOLO(model_path)
self.model.to('cpu') # Explicitly move to CPU
print("Model loaded successfully")
# Ensure image is in correct format
if isinstance(image, np.ndarray):
image = image.copy()
else:
raise ValueError("Input image must be a numpy array")
# Make prediction using CPU
predictions = self.model.predict(image, device='cpu')
# Process results
objects_data = []
if len(predictions) == 0 or not predictions[0].boxes:
return image, objects_data
cls_ids = predictions[0].boxes.cls.numpy() # Changed from cpu().numpy()
bounding_boxes = predictions[0].boxes.xyxy.int().numpy()
cls_conf = predictions[0].boxes.conf.numpy()
if predictions[0].masks is not None:
seg_mask_boundary = predictions[0].masks.xy
seg_mask = predictions[0].masks.data.numpy() # Changed from cpu().numpy()
else:
seg_mask_boundary, seg_mask = [], np.array([])
for id, cls in enumerate(cls_ids):
if cls_conf[id] <= self.confidence_threshold:
continue
cls_clr = self.get_cls_clr(int(cls))
if seg_mask.size > 0:
self.masks[id] = seg_mask[id]
if self.is_show_segmentation:
alpha = 0.8
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
if image.shape[:2] != seg_mask[id].shape[:2]:
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
if self.is_show_bounding_boxes:
(x1, y1, x2, y2) = bounding_boxes[id]
cls_name = self.model.names[int(cls)]
cls_confidence = cls_conf[id]
disp_str = f"{cls_name} {cls_confidence:.2f}"
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness)
cv2.rectangle(image, (x1, y1), (x1+len(disp_str)*9, y1+15), cls_clr, -1)
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
if len(seg_mask_boundary) > 0 and self.is_show_segmentation_boundary:
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)],
isClosed=True, color=cls_clr, thickness=2)
(x1, y1, x2, y2) = bounding_boxes[id]
center = (x1+(x2-x1)//2, y1+(y2-y1)//2)
objects_data.append([int(cls), self.model.names[int(cls)], center,
self.masks.get(id, None), cls_clr])
return image, objects_data
except Exception as e:
print(f"Error in predict: {str(e)}")
import traceback
print(traceback.format_exc())
raise