|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
import random |
|
import spaces |
|
import os |
|
import torch |
|
|
|
class ImageSegmenter: |
|
def __init__(self, model_type="yolov8s-seg", device="cpu"): |
|
self.device = device |
|
self.model = YOLO(model_type).to(self.device) |
|
self.is_show_bounding_boxes = True |
|
self.is_show_segmentation_boundary = False |
|
self.is_show_segmentation = False |
|
self.confidence_threshold = 0.5 |
|
self.cls_clr = {} |
|
self.bb_thickness = 2 |
|
self.bb_clr = (255, 0, 0) |
|
self.masks = {} |
|
self.model = None |
|
|
|
|
|
os.makedirs('models', exist_ok=True) |
|
|
|
|
|
model_path = os.path.join('models', f'{model_type}.pt') |
|
if not os.path.exists(model_path): |
|
print(f"Downloading {model_type} model...") |
|
self.model = YOLO(model_type) |
|
self.model.export() |
|
print("Model downloaded successfully") |
|
|
|
def get_cls_clr(self, cls_id): |
|
if cls_id in self.cls_clr: |
|
return self.cls_clr[cls_id] |
|
r = random.randint(50, 200) |
|
g = random.randint(50, 200) |
|
b = random.randint(50, 200) |
|
self.cls_clr[cls_id] = (r, g, b) |
|
return (r, g, b) |
|
|
|
@spaces.GPU |
|
def predict(self, image): |
|
try: |
|
|
|
if self.model is None: |
|
print("Loading YOLO model...") |
|
model_path = os.path.join('models', f'{self.model_type}.pt') |
|
|
|
self.model = YOLO(model_path) |
|
self.model.to('cpu') |
|
print("Model loaded successfully") |
|
|
|
|
|
if isinstance(image, np.ndarray): |
|
image = image.copy() |
|
else: |
|
raise ValueError("Input image must be a numpy array") |
|
|
|
|
|
predictions = self.model.predict(image, device='cpu') |
|
|
|
|
|
objects_data = [] |
|
|
|
if len(predictions) == 0 or not predictions[0].boxes: |
|
return image, objects_data |
|
|
|
cls_ids = predictions[0].boxes.cls.numpy() |
|
bounding_boxes = predictions[0].boxes.xyxy.int().numpy() |
|
cls_conf = predictions[0].boxes.conf.numpy() |
|
|
|
if predictions[0].masks is not None: |
|
seg_mask_boundary = predictions[0].masks.xy |
|
seg_mask = predictions[0].masks.data.numpy() |
|
else: |
|
seg_mask_boundary, seg_mask = [], np.array([]) |
|
|
|
for id, cls in enumerate(cls_ids): |
|
if cls_conf[id] <= self.confidence_threshold: |
|
continue |
|
|
|
cls_clr = self.get_cls_clr(int(cls)) |
|
|
|
if seg_mask.size > 0: |
|
self.masks[id] = seg_mask[id] |
|
|
|
if self.is_show_segmentation: |
|
alpha = 0.8 |
|
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0) |
|
colored_mask = np.moveaxis(colored_mask, 0, -1) |
|
|
|
if image.shape[:2] != seg_mask[id].shape[:2]: |
|
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0])) |
|
|
|
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr) |
|
image_overlay = masked.filled() |
|
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0) |
|
|
|
if self.is_show_bounding_boxes: |
|
(x1, y1, x2, y2) = bounding_boxes[id] |
|
cls_name = self.model.names[int(cls)] |
|
cls_confidence = cls_conf[id] |
|
disp_str = f"{cls_name} {cls_confidence:.2f}" |
|
cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness) |
|
cv2.rectangle(image, (x1, y1), (x1+len(disp_str)*9, y1+15), cls_clr, -1) |
|
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) |
|
|
|
if len(seg_mask_boundary) > 0 and self.is_show_segmentation_boundary: |
|
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], |
|
isClosed=True, color=cls_clr, thickness=2) |
|
|
|
(x1, y1, x2, y2) = bounding_boxes[id] |
|
center = (x1+(x2-x1)//2, y1+(y2-y1)//2) |
|
objects_data.append([int(cls), self.model.names[int(cls)], center, |
|
self.masks.get(id, None), cls_clr]) |
|
|
|
return image, objects_data |
|
|
|
except Exception as e: |
|
print(f"Error in predict: {str(e)}") |
|
import traceback |
|
print(traceback.format_exc()) |
|
raise |