Alessio Grancini
commited on
Update image_segmenter.py
Browse files- image_segmenter.py +3 -16
image_segmenter.py
CHANGED
@@ -2,12 +2,11 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
import random
|
5 |
-
import torch
|
6 |
import spaces
|
7 |
|
8 |
class ImageSegmenter:
|
9 |
def __init__(self, model_type="yolov8s-seg") -> None:
|
10 |
-
#
|
11 |
self.model_type = model_type
|
12 |
self.is_show_bounding_boxes = True
|
13 |
self.is_show_segmentation_boundary = False
|
@@ -17,13 +16,11 @@ class ImageSegmenter:
|
|
17 |
self.bb_thickness = 2
|
18 |
self.bb_clr = (255, 0, 0)
|
19 |
self.masks = {}
|
20 |
-
self.model = None
|
21 |
|
22 |
def get_cls_clr(self, cls_id):
|
23 |
if cls_id in self.cls_clr:
|
24 |
return self.cls_clr[cls_id]
|
25 |
-
|
26 |
-
# gen rand color
|
27 |
r = random.randint(50, 200)
|
28 |
g = random.randint(50, 200)
|
29 |
b = random.randint(50, 200)
|
@@ -32,11 +29,10 @@ class ImageSegmenter:
|
|
32 |
|
33 |
@spaces.GPU
|
34 |
def predict(self, image):
|
35 |
-
#
|
36 |
if self.model is None:
|
37 |
print("Loading YOLO model...")
|
38 |
self.model = YOLO('models/' + self.model_type + '.pt')
|
39 |
-
self.model.to('cuda')
|
40 |
print("Model loaded successfully")
|
41 |
|
42 |
# params
|
@@ -48,7 +44,6 @@ class ImageSegmenter:
|
|
48 |
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy()
|
49 |
cls_conf = predictions[0].boxes.conf.cpu().numpy()
|
50 |
|
51 |
-
# segmentation
|
52 |
if predictions[0].masks:
|
53 |
seg_mask_boundary = predictions[0].masks.xy
|
54 |
seg_mask = predictions[0].masks.data.cpu().numpy()
|
@@ -58,27 +53,21 @@ class ImageSegmenter:
|
|
58 |
for id, cls in enumerate(cls_ids):
|
59 |
cls_clr = self.get_cls_clr(cls)
|
60 |
|
61 |
-
# draw filled segmentation region
|
62 |
if seg_mask.any() and cls_conf[id] > self.confidence_threshold:
|
63 |
self.masks[id] = seg_mask[id]
|
64 |
|
65 |
if self.is_show_segmentation:
|
66 |
alpha = 0.8
|
67 |
-
|
68 |
-
# converting the mask from 1 channel to 3 channels
|
69 |
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
|
70 |
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
71 |
|
72 |
-
# Resize the mask to match the image size, if necessary
|
73 |
if image.shape[:2] != seg_mask[id].shape[:2]:
|
74 |
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
|
75 |
|
76 |
-
# filling the mased area with class color
|
77 |
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
|
78 |
image_overlay = masked.filled()
|
79 |
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
80 |
|
81 |
-
# draw bounding box with class name and score
|
82 |
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold:
|
83 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
84 |
cls_name = self.model.names[cls]
|
@@ -88,11 +77,9 @@ class ImageSegmenter:
|
|
88 |
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1)
|
89 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
90 |
|
91 |
-
# draw segmentation boundary
|
92 |
if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold:
|
93 |
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2)
|
94 |
|
95 |
-
# object variables
|
96 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
97 |
center = x1+(x2-x1)//2, y1+(y2-y1)//2
|
98 |
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr])
|
|
|
2 |
import numpy as np
|
3 |
from ultralytics import YOLO
|
4 |
import random
|
|
|
5 |
import spaces
|
6 |
|
7 |
class ImageSegmenter:
|
8 |
def __init__(self, model_type="yolov8s-seg") -> None:
|
9 |
+
# Don't initialize any CUDA/GPU stuff here
|
10 |
self.model_type = model_type
|
11 |
self.is_show_bounding_boxes = True
|
12 |
self.is_show_segmentation_boundary = False
|
|
|
16 |
self.bb_thickness = 2
|
17 |
self.bb_clr = (255, 0, 0)
|
18 |
self.masks = {}
|
19 |
+
self.model = None
|
20 |
|
21 |
def get_cls_clr(self, cls_id):
|
22 |
if cls_id in self.cls_clr:
|
23 |
return self.cls_clr[cls_id]
|
|
|
|
|
24 |
r = random.randint(50, 200)
|
25 |
g = random.randint(50, 200)
|
26 |
b = random.randint(50, 200)
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def predict(self, image):
|
32 |
+
# Initialize model if needed
|
33 |
if self.model is None:
|
34 |
print("Loading YOLO model...")
|
35 |
self.model = YOLO('models/' + self.model_type + '.pt')
|
|
|
36 |
print("Model loaded successfully")
|
37 |
|
38 |
# params
|
|
|
44 |
bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy()
|
45 |
cls_conf = predictions[0].boxes.conf.cpu().numpy()
|
46 |
|
|
|
47 |
if predictions[0].masks:
|
48 |
seg_mask_boundary = predictions[0].masks.xy
|
49 |
seg_mask = predictions[0].masks.data.cpu().numpy()
|
|
|
53 |
for id, cls in enumerate(cls_ids):
|
54 |
cls_clr = self.get_cls_clr(cls)
|
55 |
|
|
|
56 |
if seg_mask.any() and cls_conf[id] > self.confidence_threshold:
|
57 |
self.masks[id] = seg_mask[id]
|
58 |
|
59 |
if self.is_show_segmentation:
|
60 |
alpha = 0.8
|
|
|
|
|
61 |
colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0)
|
62 |
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
63 |
|
|
|
64 |
if image.shape[:2] != seg_mask[id].shape[:2]:
|
65 |
colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0]))
|
66 |
|
|
|
67 |
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr)
|
68 |
image_overlay = masked.filled()
|
69 |
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
70 |
|
|
|
71 |
if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold:
|
72 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
73 |
cls_name = self.model.names[cls]
|
|
|
77 |
cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1)
|
78 |
cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
79 |
|
|
|
80 |
if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold:
|
81 |
cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2)
|
82 |
|
|
|
83 |
(x1, y1, x2, y2) = bounding_boxes[id]
|
84 |
center = x1+(x2-x1)//2, y1+(y2-y1)//2
|
85 |
objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr])
|