Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import os
|
|
| 6 |
import torch
|
| 7 |
import utils
|
| 8 |
import plotly.graph_objects as go
|
|
|
|
| 9 |
|
| 10 |
from image_segmenter import ImageSegmenter
|
| 11 |
from monocular_depth_estimator import MonocularDepthEstimator
|
|
@@ -14,9 +15,11 @@ from point_cloud_generator import display_pcd
|
|
| 14 |
# params
|
| 15 |
CANCEL_PROCESSING = False
|
| 16 |
|
|
|
|
| 17 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
| 18 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
| 19 |
|
|
|
|
| 20 |
def process_image(image):
|
| 21 |
image = utils.resize(image)
|
| 22 |
image_segmentation, objects_data = img_seg.predict(image)
|
|
@@ -26,12 +29,14 @@ def process_image(image):
|
|
| 26 |
plot_fig = display_pcd(objs_pcd)
|
| 27 |
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 28 |
|
|
|
|
| 29 |
def test_process_img(image):
|
| 30 |
image = utils.resize(image)
|
| 31 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 32 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 33 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
| 34 |
|
|
|
|
| 35 |
def process_video(vid_path=None):
|
| 36 |
vid_cap = cv2.VideoCapture(vid_path)
|
| 37 |
while vid_cap.isOpened():
|
|
@@ -54,8 +59,10 @@ def update_segmentation_options(options):
|
|
| 54 |
def update_confidence_threshold(thres_val):
|
| 55 |
img_seg.confidence_threshold = thres_val/100
|
| 56 |
|
|
|
|
| 57 |
def model_selector(model_type):
|
| 58 |
-
|
|
|
|
| 59 |
if "Small - Better performance and less accuracy" == model_type:
|
| 60 |
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
|
| 61 |
elif "Medium - Balanced performance and accuracy" == model_type:
|
|
@@ -69,30 +76,12 @@ def model_selector(model_type):
|
|
| 69 |
depth_estimator = MonocularDepthEstimator(model_type=midas_model)
|
| 70 |
|
| 71 |
def cancel():
|
|
|
|
| 72 |
CANCEL_PROCESSING = True
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|
| 75 |
-
|
| 76 |
-
# testing
|
| 77 |
-
# img_1 = cv2.imread("assets/images/bus.jpg")
|
| 78 |
-
# img_1 = utils.resize(img_1)
|
| 79 |
-
|
| 80 |
-
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
|
| 81 |
-
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
|
| 82 |
-
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 83 |
-
# # print(objs_pcd[0][0])
|
| 84 |
-
# display_pcd(objs_pcd, use_matplotlib=True)
|
| 85 |
-
|
| 86 |
-
# cv2.imshow("Segmentation", image_segmentation)
|
| 87 |
-
# cv2.imshow("Depth", depthmap*objects_data[2][3])
|
| 88 |
-
# cv2.imshow("Final", final_image)
|
| 89 |
-
|
| 90 |
-
# cv2.waitKey(0)
|
| 91 |
-
# cv2.destroyAllWindows()
|
| 92 |
-
|
| 93 |
# gradio gui app
|
| 94 |
with gr.Blocks() as my_app:
|
| 95 |
-
|
| 96 |
# title
|
| 97 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
| 98 |
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
|
|
@@ -167,10 +156,7 @@ if __name__ == "__main__":
|
|
| 167 |
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
|
| 168 |
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
|
| 169 |
inputs=vid_input,
|
| 170 |
-
# outputs=vid_output,
|
| 171 |
-
# fn=vid_segmenation,
|
| 172 |
)
|
| 173 |
-
|
| 174 |
|
| 175 |
# image tab logic
|
| 176 |
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
|
|
@@ -185,5 +171,5 @@ if __name__ == "__main__":
|
|
| 185 |
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
|
| 186 |
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
|
| 187 |
|
| 188 |
-
|
| 189 |
-
my_app.queue(concurrency_count=
|
|
|
|
| 6 |
import torch
|
| 7 |
import utils
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
+
import spaces
|
| 10 |
|
| 11 |
from image_segmenter import ImageSegmenter
|
| 12 |
from monocular_depth_estimator import MonocularDepthEstimator
|
|
|
|
| 15 |
# params
|
| 16 |
CANCEL_PROCESSING = False
|
| 17 |
|
| 18 |
+
# Initialize models (but actual loading happens in decorated functions)
|
| 19 |
img_seg = ImageSegmenter(model_type="yolov8s-seg")
|
| 20 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
| 21 |
|
| 22 |
+
@spaces.GPU(duration=30) # Adjust duration based on your needs
|
| 23 |
def process_image(image):
|
| 24 |
image = utils.resize(image)
|
| 25 |
image_segmentation, objects_data = img_seg.predict(image)
|
|
|
|
| 29 |
plot_fig = display_pcd(objs_pcd)
|
| 30 |
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 31 |
|
| 32 |
+
@spaces.GPU(duration=30)
|
| 33 |
def test_process_img(image):
|
| 34 |
image = utils.resize(image)
|
| 35 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 36 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 37 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
| 38 |
|
| 39 |
+
@spaces.GPU(duration=60) # Longer duration for video processing
|
| 40 |
def process_video(vid_path=None):
|
| 41 |
vid_cap = cv2.VideoCapture(vid_path)
|
| 42 |
while vid_cap.isOpened():
|
|
|
|
| 59 |
def update_confidence_threshold(thres_val):
|
| 60 |
img_seg.confidence_threshold = thres_val/100
|
| 61 |
|
| 62 |
+
@spaces.GPU(duration=10) # Short duration for model loading
|
| 63 |
def model_selector(model_type):
|
| 64 |
+
global img_seg, depth_estimator
|
| 65 |
+
|
| 66 |
if "Small - Better performance and less accuracy" == model_type:
|
| 67 |
midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
|
| 68 |
elif "Medium - Balanced performance and accuracy" == model_type:
|
|
|
|
| 76 |
depth_estimator = MonocularDepthEstimator(model_type=midas_model)
|
| 77 |
|
| 78 |
def cancel():
|
| 79 |
+
global CANCEL_PROCESSING
|
| 80 |
CANCEL_PROCESSING = True
|
| 81 |
|
| 82 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# gradio gui app
|
| 84 |
with gr.Blocks() as my_app:
|
|
|
|
| 85 |
# title
|
| 86 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
| 87 |
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
|
|
|
|
| 156 |
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
|
| 157 |
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
|
| 158 |
inputs=vid_input,
|
|
|
|
|
|
|
| 159 |
)
|
|
|
|
| 160 |
|
| 161 |
# image tab logic
|
| 162 |
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
|
|
|
|
| 171 |
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
|
| 172 |
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
|
| 173 |
|
| 174 |
+
# Launch with appropriate queue settings for ZeroGPU
|
| 175 |
+
my_app.queue(concurrency_count=1, max_size=10).launch()
|