Alessio Grancini commited on
Commit
966fb6f
·
verified ·
1 Parent(s): cce74e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -4
app.py CHANGED
@@ -233,13 +233,13 @@ def get_detection_data(image_data):
233
  nested_dict = image_data.get("image", {}).get("image", {})
234
  full_data_url = nested_dict.get("data", "")
235
  # get model size and confidence threshold
236
- #model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
237
- #confidence_threshold = image_data.get("confidence_threshold", 0.6) # Default to 60%
238
  else:
239
  full_data_url = image_data
240
 
241
- #model_size = "Small - Better performance and less accuracy" # Fallback default
242
- #confidence_threshold = 0.6 # Fallback default
243
 
244
  if not full_data_url:
245
  return {"error": "No base64 data found in input."}
@@ -254,11 +254,17 @@ def get_detection_data(image_data):
254
  img = np.array(img)
255
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
256
 
 
 
257
  #image = utils.resize(img)
258
  resized_image = utils.resize(img) #depth requires resizing
259
  print(f"Debug - Resized image shape: {resized_image.shape}")
260
  image = img
261
  print(f"Debug - Original image shape: {image.shape}")
 
 
 
 
262
 
263
  image_segmentation, objects_data = img_seg.predict(resized_image)
264
  depthmap, depth_colormap = depth_estimator.make_prediction(resized_image)
 
233
  nested_dict = image_data.get("image", {}).get("image", {})
234
  full_data_url = nested_dict.get("data", "")
235
  # get model size and confidence threshold
236
+ model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
237
+ confidence_threshold = image_data.get("confidence_threshold", 0.1) # Default from Lens Studio
238
  else:
239
  full_data_url = image_data
240
 
241
+ model_size = "Small - Better performance and less accuracy" # Fallback default
242
+ confidence_threshold = 0.6 # Fallback default
243
 
244
  if not full_data_url:
245
  return {"error": "No base64 data found in input."}
 
254
  img = np.array(img)
255
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
256
 
257
+
258
+
259
  #image = utils.resize(img)
260
  resized_image = utils.resize(img) #depth requires resizing
261
  print(f"Debug - Resized image shape: {resized_image.shape}")
262
  image = img
263
  print(f"Debug - Original image shape: {image.shape}")
264
+
265
+ # Dynamically update model size and confidence threshold
266
+ model_selector(model_size, img_seg, depth_estimator)
267
+ update_confidence_threshold(confidence_threshold, img_seg)
268
 
269
  image_segmentation, objects_data = img_seg.predict(resized_image)
270
  depthmap, depth_colormap = depth_estimator.make_prediction(resized_image)