Alessio Grancini commited on
Commit
b4b1c15
·
verified ·
1 Parent(s): 3146d91

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -123
app.py CHANGED
@@ -1,11 +1,11 @@
 
1
  import cv2
2
  import gradio as gr
3
  import numpy as np
4
  import os
 
5
  import utils
6
  import plotly.graph_objects as go
7
- import spaces
8
- import torch
9
 
10
  from image_segmenter import ImageSegmenter
11
  from monocular_depth_estimator import MonocularDepthEstimator
@@ -14,155 +14,85 @@ from point_cloud_generator import display_pcd
14
  # params
15
  CANCEL_PROCESSING = False
16
 
17
- # Initialize classes without loading models
18
- img_seg = None
19
- depth_estimator = None
20
-
21
- def initialize_models():
22
- """Loads models onto GPU if available, otherwise falls back to CPU."""
23
- global img_seg, depth_estimator
24
- device = "cuda" if torch.cuda.is_available() else "cpu"
25
-
26
- if img_seg is None:
27
- print(f"🔹 Loading ImageSegmenter model on {device}...")
28
- img_seg = ImageSegmenter(model_type="yolov8s-seg", device=device)
29
-
30
- if depth_estimator is None:
31
- print(f"🔹 Loading Depth Estimator model on {device}...")
32
- depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256", device=device)
33
-
34
-
35
- def safe_gpu_decorator(func):
36
- """Custom decorator to handle GPU operations safely"""
37
- def wrapper(*args, **kwargs):
38
- try:
39
- return func(*args, **kwargs)
40
- except RuntimeError as e:
41
- if "cudaGetDeviceCount" in str(e):
42
- print("GPU initialization failed, falling back to CPU")
43
- # Set environment variable to force CPU
44
- os.environ['CUDA_VISIBLE_DEVICES'] = ''
45
- return func(*args, **kwargs)
46
- raise
47
- return wrapper
48
-
49
- @safe_gpu_decorator
50
- def process_image(image):
51
- try:
52
- print("🚀 Starting image processing...")
53
- initialize_models()
54
-
55
- if torch.cuda.is_available():
56
- print("✅ Using GPU for processing")
57
- torch.set_default_tensor_type(torch.cuda.FloatTensor)
58
- else:
59
- print("⚠️ Using CPU for processing")
60
-
61
- # Process image
62
- image = utils.resize(image)
63
- image_segmentation, objects_data = img_seg.predict(image)
64
- depthmap, depth_colormap = depth_estimator.make_prediction(image)
65
- dist_image = utils.draw_depth_info(image, depthmap, objects_data)
66
- objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
67
- plot_fig = display_pcd(objs_pcd)
68
-
69
- return image_segmentation, depth_colormap, dist_image, plot_fig
70
-
71
- except RuntimeError as e:
72
- print(f"🚨 RuntimeError in process_image: {e}")
73
-
74
- if "cuda" in str(e).lower():
75
- print("⚠️ CUDA error detected. Switching to CPU mode.")
76
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
77
-
78
- import traceback
79
- print(traceback.format_exc())
80
- raise
81
-
82
 
 
 
 
 
 
 
 
 
83
 
84
- @safe_gpu_decorator
85
  def test_process_img(image):
86
- initialize_models()
87
  image = utils.resize(image)
88
  image_segmentation, objects_data = img_seg.predict(image)
89
  depthmap, depth_colormap = depth_estimator.make_prediction(image)
90
  return image_segmentation, objects_data, depthmap, depth_colormap
91
 
92
- @safe_gpu_decorator
93
  def process_video(vid_path=None):
94
- try:
95
- initialize_models()
96
- vid_cap = cv2.VideoCapture(vid_path)
97
- while vid_cap.isOpened():
98
- ret, frame = vid_cap.read()
99
- if ret:
100
- print("making predictions ....")
101
- frame = utils.resize(frame)
102
- image_segmentation, objects_data = img_seg.predict(frame)
103
- depthmap, depth_colormap = depth_estimator.make_prediction(frame)
104
- dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
105
- yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
106
-
107
- vid_cap.release()
108
- return None
109
- except Exception as e:
110
- print(f"Error in process_video: {str(e)}")
111
- import traceback
112
- print(traceback.format_exc())
113
- raise
114
 
115
  def update_segmentation_options(options):
116
- initialize_models()
117
  img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
118
  img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
119
  img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
120
 
121
  def update_confidence_threshold(thres_val):
122
- initialize_models()
123
  img_seg.confidence_threshold = thres_val/100
124
 
125
- @safe_gpu_decorator
126
  def model_selector(model_type):
127
- global img_seg, depth_estimator
128
- device = "cuda" if torch.cuda.is_available() else "cpu"
129
-
130
- model_dict = {
131
- "Small - Better performance and less accuracy": ("midas_v21_small_256", "yolov8s-seg"),
132
- "Medium - Balanced performance and accuracy": ("dpt_hybrid_384", "yolov8m-seg"),
133
- "Large - Slow performance and high accuracy": ("dpt_large_384", "yolov8l-seg"),
134
- }
135
 
136
- midas_model, yolo_model = model_dict.get(model_type, ("midas_v21_small_256", "yolov8s-seg"))
137
-
138
- print(f"🔹 Switching to models: YOLO={yolo_model}, MiDaS={midas_model} on {device}")
139
-
140
- img_seg = ImageSegmenter(model_type=yolo_model, device=device)
141
- depth_estimator = MonocularDepthEstimator(model_type=midas_model, device=device)
 
 
142
 
 
 
143
 
144
  def cancel():
145
- global CANCEL_PROCESSING
146
  CANCEL_PROCESSING = True
147
 
148
  if __name__ == "__main__":
149
- # Ensure CUDA is properly initialized
150
- try:
151
- if torch.cuda.is_available():
152
- print(f"✅ CUDA is available: {torch.cuda.get_device_name(0)}")
153
- device = torch.device("cuda")
154
- torch.cuda.empty_cache() # Clear GPU cache
155
- else:
156
- print("❌ No CUDA available. Falling back to CPU.")
157
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
158
- device = torch.device("cpu")
159
- except RuntimeError as e:
160
- print(f"🚨 CUDA initialization failed: {e}. Switching to CPU mode.")
161
- os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
162
- device = torch.device("cpu")
163
 
 
 
 
 
 
 
 
 
 
164
 
 
 
 
 
 
 
 
 
165
  with gr.Blocks() as my_app:
 
166
  # title
167
  gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
168
  gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
@@ -192,6 +122,7 @@ if __name__ == "__main__":
192
  dist_img_output = gr.Image(height=300, label="Distance")
193
  pcd_img_output = gr.Plot(label="Point Cloud")
194
 
 
195
  gr.Examples(
196
  examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
197
  os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
@@ -229,13 +160,17 @@ if __name__ == "__main__":
229
  with gr.Row():
230
  dist_vid_output = gr.Image(height=300, label="Distance")
231
 
 
232
  gr.Examples(
233
  examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
234
  os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
235
  os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
236
  os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
237
  inputs=vid_input,
 
 
238
  )
 
239
 
240
  # image tab logic
241
  submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
@@ -250,4 +185,5 @@ if __name__ == "__main__":
250
  options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
251
  conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
252
 
253
- my_app.queue(max_size=10).launch()
 
 
1
+ from ultralytics import YOLO
2
  import cv2
3
  import gradio as gr
4
  import numpy as np
5
  import os
6
+ import torch
7
  import utils
8
  import plotly.graph_objects as go
 
 
9
 
10
  from image_segmenter import ImageSegmenter
11
  from monocular_depth_estimator import MonocularDepthEstimator
 
14
  # params
15
  CANCEL_PROCESSING = False
16
 
17
+ img_seg = ImageSegmenter(model_type="yolov8s-seg")
18
+ depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ def process_image(image):
21
+ image = utils.resize(image)
22
+ image_segmentation, objects_data = img_seg.predict(image)
23
+ depthmap, depth_colormap = depth_estimator.make_prediction(image)
24
+ dist_image = utils.draw_depth_info(image, depthmap, objects_data)
25
+ objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
26
+ plot_fig = display_pcd(objs_pcd)
27
+ return image_segmentation, depth_colormap, dist_image, plot_fig
28
 
 
29
  def test_process_img(image):
 
30
  image = utils.resize(image)
31
  image_segmentation, objects_data = img_seg.predict(image)
32
  depthmap, depth_colormap = depth_estimator.make_prediction(image)
33
  return image_segmentation, objects_data, depthmap, depth_colormap
34
 
 
35
  def process_video(vid_path=None):
36
+ vid_cap = cv2.VideoCapture(vid_path)
37
+ while vid_cap.isOpened():
38
+ ret, frame = vid_cap.read()
39
+ if ret:
40
+ print("making predictions ....")
41
+ frame = utils.resize(frame)
42
+ image_segmentation, objects_data = img_seg.predict(frame)
43
+ depthmap, depth_colormap = depth_estimator.make_prediction(frame)
44
+ dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
45
+ yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
46
+
47
+ return None
 
 
 
 
 
 
 
 
48
 
49
  def update_segmentation_options(options):
 
50
  img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
51
  img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
52
  img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
53
 
54
  def update_confidence_threshold(thres_val):
 
55
  img_seg.confidence_threshold = thres_val/100
56
 
 
57
  def model_selector(model_type):
 
 
 
 
 
 
 
 
58
 
59
+ if "Small - Better performance and less accuracy" == model_type:
60
+ midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
61
+ elif "Medium - Balanced performance and accuracy" == model_type:
62
+ midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
63
+ elif "Large - Slow performance and high accuracy" == model_type:
64
+ midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
65
+ else:
66
+ midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
67
 
68
+ img_seg = ImageSegmenter(model_type=yolo_model)
69
+ depth_estimator = MonocularDepthEstimator(model_type=midas_model)
70
 
71
  def cancel():
 
72
  CANCEL_PROCESSING = True
73
 
74
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ # testing
77
+ # img_1 = cv2.imread("assets/images/bus.jpg")
78
+ # img_1 = utils.resize(img_1)
79
+
80
+ # image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
81
+ # final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
82
+ # objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
83
+ # # print(objs_pcd[0][0])
84
+ # display_pcd(objs_pcd, use_matplotlib=True)
85
 
86
+ # cv2.imshow("Segmentation", image_segmentation)
87
+ # cv2.imshow("Depth", depthmap*objects_data[2][3])
88
+ # cv2.imshow("Final", final_image)
89
+
90
+ # cv2.waitKey(0)
91
+ # cv2.destroyAllWindows()
92
+
93
+ # gradio gui app
94
  with gr.Blocks() as my_app:
95
+
96
  # title
97
  gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
98
  gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
 
122
  dist_img_output = gr.Image(height=300, label="Distance")
123
  pcd_img_output = gr.Plot(label="Point Cloud")
124
 
125
+ gr.Markdown("## Sample Images")
126
  gr.Examples(
127
  examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
128
  os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
 
160
  with gr.Row():
161
  dist_vid_output = gr.Image(height=300, label="Distance")
162
 
163
+ gr.Markdown("## Sample Videos")
164
  gr.Examples(
165
  examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
166
  os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
167
  os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
168
  os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
169
  inputs=vid_input,
170
+ # outputs=vid_output,
171
+ # fn=vid_segmenation,
172
  )
173
+
174
 
175
  # image tab logic
176
  submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
 
185
  options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
186
  conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
187
 
188
+
189
+ my_app.queue(concurrency_count=5, max_size=20).launch()