Linoy Tsaban
commited on
Commit
·
b9a325a
1
Parent(s):
4bfe3d8
Rename utils.py to inversion_utils.py
Browse files- inversion_utils.py +291 -0
- utils.py +0 -2
inversion_utils.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from PIL import Image, ImageDraw ,ImageFont
|
| 5 |
+
from matplotlib import pyplot as plt
|
| 6 |
+
import torchvision.transforms as T
|
| 7 |
+
import os
|
| 8 |
+
import yaml
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None):
|
| 13 |
+
if type(image_path) is str:
|
| 14 |
+
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
|
| 15 |
+
else:
|
| 16 |
+
image = image_path
|
| 17 |
+
h, w, c = image.shape
|
| 18 |
+
left = min(left, w-1)
|
| 19 |
+
right = min(right, w - left - 1)
|
| 20 |
+
top = min(top, h - left - 1)
|
| 21 |
+
bottom = min(bottom, h - top - 1)
|
| 22 |
+
image = image[top:h-bottom, left:w-right]
|
| 23 |
+
h, w, c = image.shape
|
| 24 |
+
if h < w:
|
| 25 |
+
offset = (w - h) // 2
|
| 26 |
+
image = image[:, offset:offset + h]
|
| 27 |
+
elif w < h:
|
| 28 |
+
offset = (h - w) // 2
|
| 29 |
+
image = image[offset:offset + w]
|
| 30 |
+
image = np.array(Image.fromarray(image).resize((512, 512)))
|
| 31 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
| 32 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
|
| 33 |
+
|
| 34 |
+
return image
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_real_image(folder = "data/", img_name = None, idx = 0, img_size=512, device='cuda'):
|
| 38 |
+
from PIL import Image
|
| 39 |
+
from glob import glob
|
| 40 |
+
if img_name is not None:
|
| 41 |
+
path = os.path.join(folder, img_name)
|
| 42 |
+
else:
|
| 43 |
+
path = glob(folder + "*")[idx]
|
| 44 |
+
|
| 45 |
+
img = Image.open(path).resize((img_size,
|
| 46 |
+
img_size))
|
| 47 |
+
|
| 48 |
+
img = pil_to_tensor(img).to(device)
|
| 49 |
+
|
| 50 |
+
if img.shape[1]== 4:
|
| 51 |
+
img = img[:,:3,:,:]
|
| 52 |
+
return img
|
| 53 |
+
|
| 54 |
+
def mu_tilde(model, xt,x0, timestep):
|
| 55 |
+
"mu_tilde(x_t, x_0) DDPM paper eq. 7"
|
| 56 |
+
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
| 57 |
+
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
| 58 |
+
alpha_t = model.scheduler.alphas[timestep]
|
| 59 |
+
beta_t = 1 - alpha_t
|
| 60 |
+
alpha_bar = model.scheduler.alphas_cumprod[timestep]
|
| 61 |
+
return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + ((alpha_t**0.5 *(1-alpha_prod_t_prev)) / (1- alpha_bar))*xt
|
| 62 |
+
|
| 63 |
+
def sample_xts_from_x0(model, x0, num_inference_steps=50):
|
| 64 |
+
"""
|
| 65 |
+
Samples from P(x_1:T|x_0)
|
| 66 |
+
"""
|
| 67 |
+
# torch.manual_seed(43256465436)
|
| 68 |
+
alpha_bar = model.scheduler.alphas_cumprod
|
| 69 |
+
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
|
| 70 |
+
alphas = model.scheduler.alphas
|
| 71 |
+
betas = 1 - alphas
|
| 72 |
+
variance_noise_shape = (
|
| 73 |
+
num_inference_steps,
|
| 74 |
+
model.unet.in_channels,
|
| 75 |
+
model.unet.sample_size,
|
| 76 |
+
model.unet.sample_size)
|
| 77 |
+
|
| 78 |
+
timesteps = model.scheduler.timesteps.to(model.device)
|
| 79 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
|
| 80 |
+
xts = torch.zeros(variance_noise_shape).to(x0.device)
|
| 81 |
+
for t in reversed(timesteps):
|
| 82 |
+
idx = t_to_idx[int(t)]
|
| 83 |
+
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
|
| 84 |
+
xts = torch.cat([xts, x0 ],dim = 0)
|
| 85 |
+
|
| 86 |
+
return xts
|
| 87 |
+
|
| 88 |
+
def encode_text(model, prompts):
|
| 89 |
+
text_input = model.tokenizer(
|
| 90 |
+
prompts,
|
| 91 |
+
padding="max_length",
|
| 92 |
+
max_length=model.tokenizer.model_max_length,
|
| 93 |
+
truncation=True,
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
)
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
| 98 |
+
return text_encoding
|
| 99 |
+
|
| 100 |
+
def forward_step(model, model_output, timestep, sample):
|
| 101 |
+
next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
|
| 102 |
+
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)
|
| 103 |
+
|
| 104 |
+
# 2. compute alphas, betas
|
| 105 |
+
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
| 106 |
+
# alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod
|
| 107 |
+
|
| 108 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 109 |
+
|
| 110 |
+
# 3. compute predicted original sample from predicted noise also called
|
| 111 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 112 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
| 113 |
+
|
| 114 |
+
# 5. TODO: simple noising implementatiom
|
| 115 |
+
next_sample = model.scheduler.add_noise(pred_original_sample,
|
| 116 |
+
model_output,
|
| 117 |
+
torch.LongTensor([next_timestep]))
|
| 118 |
+
return next_sample
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_variance(model, timestep): #, prev_timestep):
|
| 122 |
+
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
| 123 |
+
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
| 124 |
+
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
| 125 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 126 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 127 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
| 128 |
+
return variance
|
| 129 |
+
|
| 130 |
+
def inversion_forward_process(model, x0,
|
| 131 |
+
etas = None,
|
| 132 |
+
prog_bar = False,
|
| 133 |
+
prompt = "",
|
| 134 |
+
cfg_scale = 3.5,
|
| 135 |
+
num_inference_steps=50, eps = None):
|
| 136 |
+
|
| 137 |
+
if not prompt=="":
|
| 138 |
+
text_embeddings = encode_text(model, prompt)
|
| 139 |
+
uncond_embedding = encode_text(model, "")
|
| 140 |
+
timesteps = model.scheduler.timesteps.to(model.device)
|
| 141 |
+
variance_noise_shape = (
|
| 142 |
+
num_inference_steps,
|
| 143 |
+
model.unet.in_channels,
|
| 144 |
+
model.unet.sample_size,
|
| 145 |
+
model.unet.sample_size)
|
| 146 |
+
if etas is None or (type(etas) in [int, float] and etas == 0):
|
| 147 |
+
eta_is_zero = True
|
| 148 |
+
zs = None
|
| 149 |
+
else:
|
| 150 |
+
eta_is_zero = False
|
| 151 |
+
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
|
| 152 |
+
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
|
| 153 |
+
alpha_bar = model.scheduler.alphas_cumprod
|
| 154 |
+
zs = torch.zeros(size=variance_noise_shape, device=model.device)
|
| 155 |
+
|
| 156 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
|
| 157 |
+
xt = x0
|
| 158 |
+
op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)
|
| 159 |
+
|
| 160 |
+
for t in op:
|
| 161 |
+
idx = t_to_idx[int(t)]
|
| 162 |
+
# 1. predict noise residual
|
| 163 |
+
if not eta_is_zero:
|
| 164 |
+
xt = xts[idx][None]
|
| 165 |
+
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
out = model.unet.forward(xt, timestep = t, encoder_hidden_states = uncond_embedding)
|
| 168 |
+
if not prompt=="":
|
| 169 |
+
cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)
|
| 170 |
+
|
| 171 |
+
if not prompt=="":
|
| 172 |
+
## classifier free guidance
|
| 173 |
+
noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
|
| 174 |
+
else:
|
| 175 |
+
noise_pred = out.sample
|
| 176 |
+
|
| 177 |
+
if eta_is_zero:
|
| 178 |
+
# 2. compute more noisy image and set x_t -> x_t+1
|
| 179 |
+
xt = forward_step(model, noise_pred, t, xt)
|
| 180 |
+
|
| 181 |
+
else:
|
| 182 |
+
xtm1 = xts[idx+1][None]
|
| 183 |
+
# pred of x0
|
| 184 |
+
pred_original_sample = (xt - (1-alpha_bar[t]) ** 0.5 * noise_pred ) / alpha_bar[t] ** 0.5
|
| 185 |
+
|
| 186 |
+
# direction to xt
|
| 187 |
+
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
| 188 |
+
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
| 189 |
+
|
| 190 |
+
variance = get_variance(model, t)
|
| 191 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance ) ** (0.5) * noise_pred
|
| 192 |
+
|
| 193 |
+
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
| 194 |
+
|
| 195 |
+
z = (xtm1 - mu_xt ) / ( etas[idx] * variance ** 0.5 )
|
| 196 |
+
zs[idx] = z
|
| 197 |
+
|
| 198 |
+
# correction to avoid error accumulation
|
| 199 |
+
xtm1 = mu_xt + ( etas[idx] * variance ** 0.5 )*z
|
| 200 |
+
xts[idx+1] = xtm1
|
| 201 |
+
|
| 202 |
+
if not zs is None:
|
| 203 |
+
zs[-1] = torch.zeros_like(zs[-1])
|
| 204 |
+
|
| 205 |
+
return xt, zs, xts
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def reverse_step(model, model_output, timestep, sample, eta = 0, variance_noise=None):
|
| 209 |
+
# 1. get previous step value (=t-1)
|
| 210 |
+
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
|
| 211 |
+
# 2. compute alphas, betas
|
| 212 |
+
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
|
| 213 |
+
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
|
| 214 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 215 |
+
# 3. compute predicted original sample from predicted noise also called
|
| 216 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 217 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
| 218 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
| 219 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
| 220 |
+
# variance = self.scheduler._get_variance(timestep, prev_timestep)
|
| 221 |
+
variance = get_variance(model, timestep) #, prev_timestep)
|
| 222 |
+
std_dev_t = eta * variance ** (0.5)
|
| 223 |
+
# Take care of asymetric reverse process (asyrp)
|
| 224 |
+
model_output_direction = model_output
|
| 225 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 226 |
+
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
|
| 227 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
|
| 228 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 229 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
| 230 |
+
# 8. Add noice if eta > 0
|
| 231 |
+
if eta > 0:
|
| 232 |
+
if variance_noise is None:
|
| 233 |
+
variance_noise = torch.randn(model_output.shape, device=model.device)
|
| 234 |
+
sigma_z = eta * variance ** (0.5) * variance_noise
|
| 235 |
+
prev_sample = prev_sample + sigma_z
|
| 236 |
+
|
| 237 |
+
return prev_sample
|
| 238 |
+
|
| 239 |
+
def inversion_reverse_process(model,
|
| 240 |
+
xT,
|
| 241 |
+
etas = 0,
|
| 242 |
+
prompts = "",
|
| 243 |
+
cfg_scales = None,
|
| 244 |
+
prog_bar = False,
|
| 245 |
+
zs = None,
|
| 246 |
+
controller=None,
|
| 247 |
+
asyrp = False):
|
| 248 |
+
|
| 249 |
+
batch_size = len(prompts)
|
| 250 |
+
|
| 251 |
+
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(model.device)
|
| 252 |
+
|
| 253 |
+
text_embeddings = encode_text(model, prompts)
|
| 254 |
+
uncond_embedding = encode_text(model, [""] * batch_size)
|
| 255 |
+
|
| 256 |
+
if etas is None: etas = 0
|
| 257 |
+
if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
|
| 258 |
+
assert len(etas) == model.scheduler.num_inference_steps
|
| 259 |
+
timesteps = model.scheduler.timesteps.to(model.device)
|
| 260 |
+
|
| 261 |
+
xt = xT.expand(batch_size, -1, -1, -1)
|
| 262 |
+
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
|
| 263 |
+
|
| 264 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
| 265 |
+
|
| 266 |
+
for t in op:
|
| 267 |
+
idx = t_to_idx[int(t)]
|
| 268 |
+
## Unconditional embedding
|
| 269 |
+
with torch.no_grad():
|
| 270 |
+
uncond_out = model.unet.forward(xt, timestep = t,
|
| 271 |
+
encoder_hidden_states = uncond_embedding)
|
| 272 |
+
|
| 273 |
+
## Conditional embedding
|
| 274 |
+
if prompts:
|
| 275 |
+
with torch.no_grad():
|
| 276 |
+
cond_out = model.unet.forward(xt, timestep = t,
|
| 277 |
+
encoder_hidden_states = text_embeddings)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
z = zs[idx] if not zs is None else None
|
| 281 |
+
z = z.expand(batch_size, -1, -1, -1)
|
| 282 |
+
if prompts:
|
| 283 |
+
## classifier free guidance
|
| 284 |
+
noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
|
| 285 |
+
else:
|
| 286 |
+
noise_pred = uncond_out.sample
|
| 287 |
+
# 2. compute less noisy image and set x_t -> x_t-1
|
| 288 |
+
xt = reverse_step(model, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
|
| 289 |
+
if controller is not None:
|
| 290 |
+
xt = controller.step_callback(xt)
|
| 291 |
+
return xt, zs
|
utils.py
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
def hi():
|
| 2 |
-
return "hi"
|
|
|
|
|
|
|
|
|