File size: 21,699 Bytes
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import glob, math
import numpy as np
# from scipy import misc
# from scipy import linalg
from PIL import Image
import io
import matplotlib.pyplot as plt
EPS = 1e-6


XMIN = -64.0 # right (neg is left)
XMAX = 64.0 # right
YMIN = -64.0 # down (neg is up)
YMAX = 64.0 # down
ZMIN = -64.0 # forward
ZMAX = 64.0 # forward

def print_stats(name, tensor):
    tensor = tensor.astype(np.float32)
    print('%s min = %.2f, mean = %.2f, max = %.2f' % (name, np.min(tensor), np.mean(tensor), np.max(tensor)), tensor.shape)
    
def reduce_masked_mean(x, mask, axis=None, keepdims=False):
    # x and mask are the same shape
    # returns shape-1
    # axis can be a list of axes
    prod = x*mask
    numer = np.sum(prod, axis=axis, keepdims=keepdims)
    denom = EPS+np.sum(mask, axis=axis, keepdims=keepdims)
    mean = numer/denom
    return mean

def reduce_masked_sum(x, mask, axis=None, keepdims=False):
    # x and mask are the same shape
    # returns shape-1
    # axis can be a list of axes
    prod = x*mask
    numer = np.sum(prod, axis=axis, keepdims=keepdims)
    return numer

def reduce_masked_median(x, mask, keep_batch=False):
    # x and mask are the same shape
    # returns shape-1
    # axis can be a list of axes

    if not (x.shape == mask.shape):
        print('reduce_masked_median: these shapes should match:', x.shape, mask.shape)
        assert(False)
    # assert(x.shape == mask.shape)

    B = list(x.shape)[0]

    if keep_batch:
        x = np.reshape(x, [B, -1])
        mask = np.reshape(mask, [B, -1])
        meds = np.zeros([B], np.float32)
        for b in list(range(B)):
            xb = x[b]
            mb = mask[b]
            if np.sum(mb) > 0:
                xb = xb[mb > 0]
                meds[b] = np.median(xb)
            else:
                meds[b] = np.nan
        return meds
    else:
        x = np.reshape(x, [-1])
        mask = np.reshape(mask, [-1])
        if np.sum(mask) > 0:
            x = x[mask > 0]
            med = np.median(x)
        else:
            med = np.nan
        med = np.array([med], np.float32)
        return med
    
def get_nFiles(path):
    return len(glob.glob(path))

def get_file_list(path):
    return glob.glob(path)

def rotm2eul(R):
    # R is 3x3
    sy = math.sqrt(R[0,0] * R[0,0] +  R[1,0] * R[1,0])
    if sy > 1e-6: # singular
        x = math.atan2(R[2,1] , R[2,2])
        y = math.atan2(-R[2,0], sy)
        z = math.atan2(R[1,0], R[0,0])
    else:
        x = math.atan2(-R[1,2], R[1,1])
        y = math.atan2(-R[2,0], sy)
        z = 0
    return x, y, z
            
def rad2deg(rad):
    return rad*180.0/np.pi

def deg2rad(deg):
    return deg/180.0*np.pi
            
def eul2rotm(rx, ry, rz):
    # copy of matlab, but order of inputs is different
    # R = [  cy*cz   sy*sx*cz-sz*cx    sy*cx*cz+sz*sx
    #        cy*sz   sy*sx*sz+cz*cx    sy*cx*sz-cz*sx
    #        -sy            cy*sx             cy*cx]
    sinz = np.sin(rz)
    siny = np.sin(ry)
    sinx = np.sin(rx)
    cosz = np.cos(rz)
    cosy = np.cos(ry)
    cosx = np.cos(rx)
    r11 = cosy*cosz
    r12 = sinx*siny*cosz - cosx*sinz
    r13 = cosx*siny*cosz + sinx*sinz
    r21 = cosy*sinz
    r22 = sinx*siny*sinz + cosx*cosz
    r23 = cosx*siny*sinz - sinx*cosz
    r31 = -siny
    r32 = sinx*cosy
    r33 = cosx*cosy
    r1 = np.stack([r11,r12,r13],axis=-1)
    r2 = np.stack([r21,r22,r23],axis=-1)
    r3 = np.stack([r31,r32,r33],axis=-1)
    r = np.stack([r1,r2,r3],axis=0)
    return r

def wrap2pi(rad_angle):
    # puts the angle into the range [-pi, pi]
    return np.arctan2(np.sin(rad_angle), np.cos(rad_angle))

def rot2view(rx,ry,rz,x,y,z):
    # takes rot angles and 3d position as input
    # returns viewpoint angles as output
    # (all in radians)
    # it will perform strangely if z <= 0
    az = wrap2pi(ry - (-np.arctan2(z, x) - 1.5*np.pi))
    el = -wrap2pi(rx - (-np.arctan2(z, y) - 1.5*np.pi))
    th = -rz
    return az, el, th

def invAxB(a,b):
    """
    Compute the relative 3d transformation between a and b.
    
    Input:
    a -- first pose (homogeneous 4x4 matrix)
    b -- second pose (homogeneous 4x4 matrix)
    
    Output:
    Relative 3d transformation from a to b.
    """
    return np.dot(np.linalg.inv(a),b)
        
def merge_rt(r, t):
    # r is 3 x 3
    # t is 3 or maybe 3 x 1
    t = np.reshape(t, [3, 1])
    rt = np.concatenate((r,t), axis=1)
    # rt is 3 x 4
    br = np.reshape(np.array([0,0,0,1], np.float32), [1, 4])
    # br is 1 x 4 
    rt = np.concatenate((rt, br), axis=0)
    # rt is 4 x 4
    return rt

def split_rt(rt):
    r = rt[:3,:3]
    t = rt[:3,3]
    r = np.reshape(r, [3, 3])
    t = np.reshape(t, [3, 1])
    return r, t

def split_intrinsics(K):
    # K is 3 x 4 or 4 x 4
    fx = K[0,0]
    fy = K[1,1]
    x0 = K[0,2]
    y0 = K[1,2]
    return fx, fy, x0, y0
                    
def merge_intrinsics(fx, fy, x0, y0):
    # inputs are shaped []
    K = np.eye(4)
    K[0,0] = fx
    K[1,1] = fy
    K[0,2] = x0
    K[1,2] = y0
    # K is shaped 4 x 4
    return K
                            
def scale_intrinsics(K, sx, sy):
    fx, fy, x0, y0 = split_intrinsics(K)
    fx *= sx
    fy *= sy
    x0 *= sx
    y0 *= sy
    return merge_intrinsics(fx, fy, x0, y0)

# def meshgrid(H, W):
#     x = np.linspace(0, W-1, W)
#     y = np.linspace(0, H-1, H)
#     xv, yv = np.meshgrid(x, y)
#     return xv, yv

def compute_distance(transform):
    """
    Compute the distance of the translational component of a 4x4 homogeneous matrix.
    """
    return numpy.linalg.norm(transform[0:3,3])

def radian_l1_dist(e, g):
    # if our angles are in [0, 360] we can follow this stack overflow answer:
    # https://gamedev.stackexchange.com/questions/4467/comparing-angles-and-working-out-the-difference
    # wrap2pi brings the angles to [-180, 180]; adding pi puts them in [0, 360]
    e = wrap2pi(e)+np.pi
    g = wrap2pi(g)+np.pi
    l = np.abs(np.pi - np.abs(np.abs(e-g) - np.pi))
    return l

def apply_pix_T_cam(pix_T_cam, xyz):
    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    # xyz is shaped B x H*W x 3
    # returns xy, shaped B x H*W x 2
    N, C = xyz.shape
    x, y, z = np.split(xyz, 3, axis=-1)
    EPS = 1e-4
    z = np.clip(z, EPS, None)
    x = (x*fx)/(z)+x0
    y = (y*fy)/(z)+y0
    xy = np.concatenate([x, y], axis=-1)
    return xy

def apply_4x4(RT, XYZ):
    # RT is 4 x 4
    # XYZ is N x 3

    # put into homogeneous coords
    X, Y, Z = np.split(XYZ, 3, axis=1)
    ones = np.ones_like(X)
    XYZ1 = np.concatenate([X, Y, Z, ones], axis=1)
    # XYZ1 is N x 4

    XYZ1_t = np.transpose(XYZ1)
    # this is 4 x N

    XYZ2_t = np.dot(RT, XYZ1_t)
    # this is 4 x N
    
    XYZ2 = np.transpose(XYZ2_t)
    # this is N x 4
    
    XYZ2 = XYZ2[:,:3]
    # this is N x 3
    
    return XYZ2

def Ref2Mem(xyz, Z, Y, X):
    # xyz is N x 3, in ref coordinates
    # transforms ref coordinates into mem coordinates
    N, C = xyz.shape
    assert(C==3)
    mem_T_ref = get_mem_T_ref(Z, Y, X)
    xyz = apply_4x4(mem_T_ref, xyz)
    return xyz

# def Mem2Ref(xyz_mem, MH, MW, MD):
#     # xyz is B x N x 3, in mem coordinates
#     # transforms mem coordinates into ref coordinates
#     B, N, C = xyz_mem.get_shape().as_list()
#     ref_T_mem = get_ref_T_mem(B, MH, MW, MD)
#     xyz_ref = utils_geom.apply_4x4(ref_T_mem, xyz_mem)
#     return xyz_ref

def get_mem_T_ref(Z, Y, X):
    # sometimes we want the mat itself
    # note this is not a rigid transform
    
    # for interpretability, let's construct this in two steps...

    # translation
    center_T_ref = np.eye(4, dtype=np.float32)
    center_T_ref[0,3] = -XMIN
    center_T_ref[1,3] = -YMIN
    center_T_ref[2,3] = -ZMIN

    VOX_SIZE_X = (XMAX-XMIN)/float(X)
    VOX_SIZE_Y = (YMAX-YMIN)/float(Y)
    VOX_SIZE_Z = (ZMAX-ZMIN)/float(Z)
    
    # scaling
    mem_T_center = np.eye(4, dtype=np.float32)
    mem_T_center[0,0] = 1./VOX_SIZE_X
    mem_T_center[1,1] = 1./VOX_SIZE_Y
    mem_T_center[2,2] = 1./VOX_SIZE_Z
    
    mem_T_ref = np.dot(mem_T_center, center_T_ref)
    return mem_T_ref

def safe_inverse(a):
    r, t = split_rt(a)
    t = np.reshape(t, [3, 1])
    r_transpose = r.T
    inv = np.concatenate([r_transpose, -np.matmul(r_transpose, t)], 1)
    bottom_row = a[3:4, :] # this is [0, 0, 0, 1]
    inv = np.concatenate([inv, bottom_row], 0)
    return inv

def get_ref_T_mem(Z, Y, X):
    mem_T_ref = get_mem_T_ref(X, Y, X)
    # note safe_inverse is inapplicable here,
    # since the transform is nonrigid
    ref_T_mem = np.linalg.inv(mem_T_ref)
    return ref_T_mem

def voxelize_xyz(xyz_ref, Z, Y, X):
    # xyz_ref is N x 3
    xyz_mem = Ref2Mem(xyz_ref, Z, Y, X)
    # this is N x 3
    voxels = get_occupancy(xyz_mem, Z, Y, X)
    voxels = np.reshape(voxels, [Z, Y, X, 1])
    return voxels

def get_inbounds(xyz, Z, Y, X, already_mem=False):
    # xyz is H*W x 3
    
    if not already_mem:
        xyz = Ref2Mem(xyz, Z, Y, X)
    
    x_valid = np.logical_and(
        np.greater_equal(xyz[:,0], -0.5), 
        np.less(xyz[:,0], float(X)-0.5))
    y_valid = np.logical_and(
        np.greater_equal(xyz[:,1], -0.5), 
        np.less(xyz[:,1], float(Y)-0.5))
    z_valid = np.logical_and(
        np.greater_equal(xyz[:,2], -0.5), 
        np.less(xyz[:,2], float(Z)-0.5))
    inbounds = np.logical_and(np.logical_and(x_valid, y_valid), z_valid)
    return inbounds

def sub2ind3d_zyx(depth, height, width, d, h, w):
    # same as sub2ind3d, but inputs in zyx order
    # when gathering/scattering with these inds, the tensor should be Z x Y x X
    return d*height*width + h*width + w

def sub2ind3d_yxz(height, width, depth, h, w, d):
    return h*width*depth + w*depth + d

# def ind2sub(height, width, ind):
#     # int input
#     y = int(ind / height)
#     x = ind % height
#     return y, x

def get_occupancy(xyz_mem, Z, Y, X):
    # xyz_mem is N x 3
    # we want to fill a voxel tensor with 1's at these inds

    inbounds = get_inbounds(xyz_mem, Z, Y, X, already_mem=True)
    inds = np.where(inbounds)

    xyz_mem = np.reshape(xyz_mem[inds], [-1, 3])
    # xyz_mem is N x 3

    # this is more accurate than a cast/floor, but runs into issues when Y==0
    xyz_mem = np.round(xyz_mem).astype(np.int32)
    x = xyz_mem[:,0]
    y = xyz_mem[:,1]
    z = xyz_mem[:,2]

    voxels = np.zeros([Z, Y, X], np.float32)
    voxels[z, y, x] = 1.0

    return voxels

def pixels2camera(x,y,z,fx,fy,x0,y0):
    # x and y are locations in pixel coordinates, z is a depth image in meters
    # their shapes are H x W
    # fx, fy, x0, y0 are scalar camera intrinsics
    # returns xyz, sized [B,H*W,3]
    
    H, W = z.shape
    
    fx = np.reshape(fx, [1,1])
    fy = np.reshape(fy, [1,1])
    x0 = np.reshape(x0, [1,1])
    y0 = np.reshape(y0, [1,1])
    
    # unproject
    x = ((z+EPS)/fx)*(x-x0)
    y = ((z+EPS)/fy)*(y-y0)
    
    x = np.reshape(x, [-1])
    y = np.reshape(y, [-1])
    z = np.reshape(z, [-1])
    xyz = np.stack([x,y,z], axis=1)
    return xyz

def depth2pointcloud(z, pix_T_cam):
    H = z.shape[0]
    W = z.shape[1]
    y, x = meshgrid2d(H, W)
    z = np.reshape(z, [H, W])
    
    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    xyz = pixels2camera(x, y, z, fx, fy, x0, y0)
    return xyz

def meshgrid2d(Y, X):
    grid_y = np.linspace(0.0, Y-1, Y)
    grid_y = np.reshape(grid_y, [Y, 1])
    grid_y = np.tile(grid_y, [1, X])

    grid_x = np.linspace(0.0, X-1, X)
    grid_x = np.reshape(grid_x, [1, X])
    grid_x = np.tile(grid_x, [Y, 1])

    # outputs are Y x X
    return grid_y, grid_x

def gridcloud3d(Y, X, Z):
    x_ = np.linspace(0, X-1, X)
    y_ = np.linspace(0, Y-1, Y)
    z_ = np.linspace(0, Z-1, Z)
    y, x, z = np.meshgrid(y_, x_, z_, indexing='ij')
    x = np.reshape(x, [-1])
    y = np.reshape(y, [-1])
    z = np.reshape(z, [-1])
    xyz = np.stack([x,y,z], axis=1).astype(np.float32)
    return xyz

def gridcloud2d(Y, X):
    x_ = np.linspace(0, X-1, X)
    y_ = np.linspace(0, Y-1, Y)
    y, x = np.meshgrid(y_, x_, indexing='ij')
    x = np.reshape(x, [-1])
    y = np.reshape(y, [-1])
    xy = np.stack([x,y], axis=1).astype(np.float32)
    return xy

def normalize(im):
    im = im - np.min(im)
    im = im / np.max(im)
    return im

def wrap2pi(rad_angle):
    # rad_angle can be any shape
    # puts the angle into the range [-pi, pi]
    return np.arctan2(np.sin(rad_angle), np.cos(rad_angle))

def convert_occ_to_height(occ):
    Z, Y, X, C = occ.shape
    assert(C==1)
    
    height = np.linspace(float(Y), 1.0, Y)
    height = np.reshape(height, [1, Y, 1, 1])
    height = np.max(occ*height, axis=1)/float(Y)
    height = np.reshape(height, [Z, X, C])
    return height

def create_depth_image(xy, Z, H, W):

    # turn the xy coordinates into image inds
    xy = np.round(xy)

    # lidar reports a sphere of measurements
    # only use the inds that are within the image bounds
    # also, only use forward-pointing depths (Z > 0)
    valid = (xy[:,0] < W-1) & (xy[:,1] < H-1) & (xy[:,0] >= 0) & (xy[:,1] >= 0) & (Z[:] > 0)

    # gather these up
    xy = xy[valid]
    Z = Z[valid]
    
    inds = sub2ind(H,W,xy[:,1],xy[:,0])
    depth = np.zeros((H*W), np.float32)

    for (index, replacement) in zip(inds, Z):
        depth[index] = replacement
    depth[np.where(depth == 0.0)] = 70.0
    depth = np.reshape(depth, [H, W])

    return depth

def vis_depth(depth, maxdepth=80.0, log_vis=True):
    depth[depth<=0.0] = maxdepth
    if log_vis:
        depth = np.log(depth)
        depth = np.clip(depth, 0, np.log(maxdepth))
    else:
        depth = np.clip(depth, 0, maxdepth)
    depth = (depth*255.0).astype(np.uint8)
    return depth

def preprocess_color(x):
    return x.astype(np.float32) * 1./255 - 0.5

def convert_box_to_ref_T_obj(boxes):
    shape = boxes.shape
    boxes = boxes.reshape(-1,9)
    rots = [eul2rotm(rx,ry,rz)
            for rx,ry,rz in boxes[:,6:]]
    rots = np.stack(rots,axis=0)
    trans = boxes[:,:3]
    ref_T_objs = [merge_rt(rot,tran)
                  for rot,tran in zip(rots,trans)]
    ref_T_objs = np.stack(ref_T_objs,axis=0)
    ref_T_objs = ref_T_objs.reshape(shape[:-1]+(4,4))
    ref_T_objs = ref_T_objs.astype(np.float32)
    return ref_T_objs

def get_rot_from_delta(delta, yaw_only=False):
    dx = delta[:,0]
    dy = delta[:,1]
    dz = delta[:,2]

    bot_hyp = np.sqrt(dz**2 + dx**2)
    # top_hyp = np.sqrt(bot_hyp**2 + dy**2)

    pitch = -np.arctan2(dy, bot_hyp)
    yaw = np.arctan2(dz, dx)

    if yaw_only:
        rot = [eul2rotm(0,y,0) for y in yaw]
    else:
        rot = [eul2rotm(0,y,p) for (p,y) in zip(pitch,yaw)]
        
    rot = np.stack(rot)
    # rot is B x 3 x 3
    return rot

def im2col(im, psize):
    n_channels = 1 if len(im.shape) == 2 else im.shape[0]
    (n_channels, rows, cols) = (1,) * (3 - len(im.shape)) + im.shape

    im_pad = np.zeros((n_channels,
                       int(math.ceil(1.0 * rows / psize) * psize),
                       int(math.ceil(1.0 * cols / psize) * psize)))
    im_pad[:, 0:rows, 0:cols] = im

    final = np.zeros((im_pad.shape[1], im_pad.shape[2], n_channels,
                      psize, psize))
    for c in np.arange(n_channels):
        for x in np.arange(psize):
            for y in np.arange(psize):
                im_shift = np.vstack(
                    (im_pad[c, x:], im_pad[c, :x]))
                im_shift = np.column_stack(
                    (im_shift[:, y:], im_shift[:, :y]))
                final[x::psize, y::psize, c] = np.swapaxes(
                    im_shift.reshape(int(im_pad.shape[1] / psize), psize,
                                     int(im_pad.shape[2] / psize), psize), 1, 2)

    return np.squeeze(final[0:rows - psize + 1, 0:cols - psize + 1])

def filter_discontinuities(depth, filter_size=9, thresh=10):
    H, W = list(depth.shape)

    # Ensure that filter sizes are okay
    assert filter_size % 2 == 1, "Can only use odd filter sizes."

    # Compute discontinuities
    offset = int((filter_size - 1) / 2)
    patches = 1.0 * im2col(depth, filter_size)
    mids = patches[:, :, offset, offset]
    mins = np.min(patches, axis=(2, 3))
    maxes = np.max(patches, axis=(2, 3))

    discont = np.maximum(np.abs(mins - mids),
                         np.abs(maxes - mids))
    mark = discont > thresh

    # Account for offsets
    final_mark = np.zeros((H, W), dtype=np.uint16)
    final_mark[offset:offset + mark.shape[0],
               offset:offset + mark.shape[1]] = mark

    return depth * (1 - final_mark)

def argmax2d(tensor):
    Y, X = list(tensor.shape)
    # flatten the Tensor along the height and width axes
    flat_tensor = tensor.reshape(-1)
    # argmax of the flat tensor
    argmax = np.argmax(flat_tensor)
    
    # convert the indices into 2d coordinates
    argmax_y = argmax // X # row
    argmax_x = argmax % X # col

    return argmax_y, argmax_x

def plot_traj_3d(traj):
    # traj is S x 3
    
    # print('traj', traj.shape)
    S, C = list(traj.shape)
    assert(C==3)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    colors = [plt.cm.RdYlBu(i) for i in np.linspace(0,1,S)]
    # print('colors', colors)
    
    xs = traj[:,0]
    ys = -traj[:,1]
    zs = traj[:,2]

    ax.scatter(xs, zs, ys, s=30, c=colors, marker='o', alpha=1.0, edgecolors=(0,0,0))#, color=color_map[n])
        
    ax.set_xlabel('X')
    ax.set_ylabel('Z')
    ax.set_zlabel('Y')

    ax.set_xlim(0,1)
    ax.set_ylim(0,1) # this is really Z
    ax.set_zlim(-1,0) # this is really Y

    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = np.array(Image.open(buf)) # H x W x 4
    image = image[:,:,:3]

    plt.close()
    return image

def camera2pixels(xyz, pix_T_cam):
    # xyz is shaped N x 3
    # returns xy, shaped N x 2
    
    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    x, y, z = xyz[:,0], xyz[:,1], xyz[:,2]

    EPS = 1e-4
    z = np.clip(z, EPS, None)
    x = (x*fx)/z + x0
    y = (y*fy)/z + y0
    xy = np.stack([x, y], axis=-1)
    return xy

def make_colorwheel():
    """
    Generates a color wheel for optical flow visualization as presented in:
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
        URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf

    Code follows the original C++ source code of Daniel Scharstein.
    Code follows the the Matlab source code of Deqing Sun.

    Returns:
        np.ndarray: Color wheel
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = np.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
    col = col+RY
    # YG
    colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
    colorwheel[col:col+YG, 1] = 255
    col = col+YG
    # GC
    colorwheel[col:col+GC, 1] = 255
    colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
    col = col+GC
    # CB
    colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
    colorwheel[col:col+CB, 2] = 255
    col = col+CB
    # BM
    colorwheel[col:col+BM, 2] = 255
    colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
    col = col+BM
    # MR
    colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
    colorwheel[col:col+MR, 0] = 255
    return colorwheel

def flow_uv_to_colors(u, v, convert_to_bgr=False):
    """
    Applies the flow color wheel to (possibly clipped) flow components u and v.

    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun

    Args:
        u (np.ndarray): Input horizontal flow of shape [H,W]
        v (np.ndarray): Input vertical flow of shape [H,W]
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.

    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
    colorwheel = make_colorwheel()  # shape [55x3]
    ncols = colorwheel.shape[0]
    rad = np.sqrt(np.square(u) + np.square(v))
    a = np.arctan2(-v, -u)/np.pi
    fk = (a+1) / 2*(ncols-1)
    k0 = np.floor(fk).astype(np.int32)
    k1 = k0 + 1
    k1[k1 == ncols] = 0
    f = fk - k0
    for i in range(colorwheel.shape[1]):
        tmp = colorwheel[:,i]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1-f)*col0 + f*col1
        idx = (rad <= 1)
        col[idx]  = 1 - rad[idx] * (1-col[idx])
        col[~idx] = col[~idx] * 0.75   # out of range
        # Note the 2-i => BGR instead of RGB
        ch_idx = 2-i if convert_to_bgr else i
        flow_image[:,:,ch_idx] = np.floor(255 * col)
    return flow_image

def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
    """
    Expects a two dimensional flow image of shape.

    Args:
        flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
        clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.

    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    assert flow_uv.ndim == 3, 'input flow must have three dimensions'
    assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
    if clip_flow is not None:
        flow_uv = np.clip(flow_uv, -clip_flow, clip_flow) / clip_flow
        # flow_uv = np.clamp(flow, -clip, clip)/clip
        
    u = flow_uv[:,:,0]
    v = flow_uv[:,:,1]
    rad = np.sqrt(np.square(u) + np.square(v))
    rad_max = np.max(rad)
    epsilon = 1e-5
    u = u / (rad_max + epsilon)
    v = v / (rad_max + epsilon)
    return flow_uv_to_colors(u, v, convert_to_bgr)