File size: 7,020 Bytes
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import utils.basic
import torch.nn.functional as F

def bilinear_sampler(input, coords, align_corners=True, padding_mode="border"):
    r"""Sample a tensor using bilinear interpolation

    `bilinear_sampler(input, coords)` samples a tensor :attr:`input` at
    coordinates :attr:`coords` using bilinear interpolation. It is the same
    as `torch.nn.functional.grid_sample()` but with a different coordinate
    convention.

    The input tensor is assumed to be of shape :math:`(B, C, H, W)`, where
    :math:`B` is the batch size, :math:`C` is the number of channels,
    :math:`H` is the height of the image, and :math:`W` is the width of the
    image. The tensor :attr:`coords` of shape :math:`(B, H_o, W_o, 2)` is
    interpreted as an array of 2D point coordinates :math:`(x_i,y_i)`.

    Alternatively, the input tensor can be of size :math:`(B, C, T, H, W)`,
    in which case sample points are triplets :math:`(t_i,x_i,y_i)`. Note
    that in this case the order of the components is slightly different
    from `grid_sample()`, which would expect :math:`(x_i,y_i,t_i)`.

    If `align_corners` is `True`, the coordinate :math:`x` is assumed to be
    in the range :math:`[0,W-1]`, with 0 corresponding to the center of the
    left-most image pixel :math:`W-1` to the center of the right-most
    pixel.

    If `align_corners` is `False`, the coordinate :math:`x` is assumed to
    be in the range :math:`[0,W]`, with 0 corresponding to the left edge of
    the left-most pixel :math:`W` to the right edge of the right-most
    pixel.

    Similar conventions apply to the :math:`y` for the range
    :math:`[0,H-1]` and :math:`[0,H]` and to :math:`t` for the range
    :math:`[0,T-1]` and :math:`[0,T]`.

    Args:
        input (Tensor): batch of input images.
        coords (Tensor): batch of coordinates.
        align_corners (bool, optional): Coordinate convention. Defaults to `True`.
        padding_mode (str, optional): Padding mode. Defaults to `"border"`.

    Returns:
        Tensor: sampled points.
    """

    sizes = input.shape[2:]

    assert len(sizes) in [2, 3]

    if len(sizes) == 3:
        # t x y -> x y t to match dimensions T H W in grid_sample
        coords = coords[..., [1, 2, 0]]

    if align_corners:
        coords = coords * torch.tensor(
            [2 / max(size - 1, 1) for size in reversed(sizes)], device=coords.device
        )
    else:
        coords = coords * torch.tensor(
            [2 / size for size in reversed(sizes)], device=coords.device
        )

    coords -= 1

    return F.grid_sample(
        input, coords, align_corners=align_corners, padding_mode=padding_mode
    )


def sample_features4d(input, coords):
    r"""Sample spatial features

    `sample_features4d(input, coords)` samples the spatial features
    :attr:`input` represented by a 4D tensor :math:`(B, C, H, W)`.

    The field is sampled at coordinates :attr:`coords` using bilinear
    interpolation. :attr:`coords` is assumed to be of shape :math:`(B, R,
    3)`, where each sample has the format :math:`(x_i, y_i)`. This uses the
    same convention as :func:`bilinear_sampler` with `align_corners=True`.

    The output tensor has one feature per point, and has shape :math:`(B,
    R, C)`.

    Args:
        input (Tensor): spatial features.
        coords (Tensor): points.

    Returns:
        Tensor: sampled features.
    """

    B, _, _, _ = input.shape

    # B R 2 -> B R 1 2
    coords = coords.unsqueeze(2)

    # B C R 1
    feats = bilinear_sampler(input, coords)

    return feats.permute(0, 2, 1, 3).view(
        B, -1, feats.shape[1] * feats.shape[3]
    )  # B C R 1 -> B R C


def sample_features5d(input, coords):
    r"""Sample spatio-temporal features

    `sample_features5d(input, coords)` works in the same way as
    :func:`sample_features4d` but for spatio-temporal features and points:
    :attr:`input` is a 5D tensor :math:`(B, T, C, H, W)`, :attr:`coords` is
    a :math:`(B, R1, R2, 3)` tensor of spatio-temporal point :math:`(t_i,
    x_i, y_i)`. The output tensor has shape :math:`(B, R1, R2, C)`.

    Args:
        input (Tensor): spatio-temporal features.
        coords (Tensor): spatio-temporal points.

    Returns:
        Tensor: sampled features.
    """

    B, T, _, _, _ = input.shape

    # B T C H W -> B C T H W
    input = input.permute(0, 2, 1, 3, 4)

    # B R1 R2 3 -> B R1 R2 1 3
    coords = coords.unsqueeze(3)

    # B C R1 R2 1
    feats = bilinear_sampler(input, coords)

    return feats.permute(0, 2, 3, 1, 4).view(
        B, feats.shape[2], feats.shape[3], feats.shape[1]
    )  # B C R1 R2 1 -> B R1 R2 C


def bilinear_sample2d(im, x, y, return_inbounds=False):
    # x and y are each B, N
    # output is B, C, N
    B, C, H, W = list(im.shape)
    N = list(x.shape)[1]

    x = x.float()
    y = y.float()
    H_f = torch.tensor(H, dtype=torch.float32)
    W_f = torch.tensor(W, dtype=torch.float32)
    
    # inbound_mask = (x>-0.5).float()*(y>-0.5).float()*(x<W_f+0.5).float()*(y<H_f+0.5).float()

    max_y = (H_f - 1).int()
    max_x = (W_f - 1).int()

    x0 = torch.floor(x).int()
    x1 = x0 + 1
    y0 = torch.floor(y).int()
    y1 = y0 + 1
    
    x0_clip = torch.clamp(x0, 0, max_x)
    x1_clip = torch.clamp(x1, 0, max_x)
    y0_clip = torch.clamp(y0, 0, max_y)
    y1_clip = torch.clamp(y1, 0, max_y)
    dim2 = W
    dim1 = W * H

    base = torch.arange(0, B, dtype=torch.int64, device=x.device)*dim1
    base = torch.reshape(base, [B, 1]).repeat([1, N])

    base_y0 = base + y0_clip * dim2
    base_y1 = base + y1_clip * dim2

    idx_y0_x0 = base_y0 + x0_clip
    idx_y0_x1 = base_y0 + x1_clip
    idx_y1_x0 = base_y1 + x0_clip
    idx_y1_x1 = base_y1 + x1_clip

    # use the indices to lookup pixels in the flat image
    # im is B x C x H x W
    # move C out to last dim
    im_flat = (im.permute(0, 2, 3, 1)).reshape(B*H*W, C)
    i_y0_x0 = im_flat[idx_y0_x0.long()]
    i_y0_x1 = im_flat[idx_y0_x1.long()]
    i_y1_x0 = im_flat[idx_y1_x0.long()]
    i_y1_x1 = im_flat[idx_y1_x1.long()]

    # Finally calculate interpolated values.
    x0_f = x0.float()
    x1_f = x1.float()
    y0_f = y0.float()
    y1_f = y1.float()

    w_y0_x0 = ((x1_f - x) * (y1_f - y)).unsqueeze(2)
    w_y0_x1 = ((x - x0_f) * (y1_f - y)).unsqueeze(2)
    w_y1_x0 = ((x1_f - x) * (y - y0_f)).unsqueeze(2)
    w_y1_x1 = ((x - x0_f) * (y - y0_f)).unsqueeze(2)

    output = w_y0_x0 * i_y0_x0 + w_y0_x1 * i_y0_x1 + \
             w_y1_x0 * i_y1_x0 + w_y1_x1 * i_y1_x1
    # output is B*N x C
    output = output.view(B, -1, C)
    output = output.permute(0, 2, 1)
    # output is B x C x N

    if return_inbounds:
        x_valid = (x > -0.5).byte() & (x < float(W_f - 0.5)).byte()
        y_valid = (y > -0.5).byte() & (y < float(H_f - 0.5)).byte()
        inbounds = (x_valid & y_valid).float()
        inbounds = inbounds.reshape(B, N) # something seems wrong here for B>1; i'm getting an error here (or downstream if i put -1)
        return output, inbounds

    return output # B, C, N