File size: 8,648 Bytes
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn.functional as F
import torch.nn as nn
from typing import List
import utils.basic


def sequence_loss(
    flow_preds,
    flow_gt,
    valids,
    vis=None,
    gamma=0.8,
    use_huber_loss=False,
    loss_only_for_visible=False,
):
    """Loss function defined over sequence of flow predictions"""
    total_flow_loss = 0.0
    for j in range(len(flow_gt)):
        B, S, N, D = flow_gt[j].shape
        B, S2, N = valids[j].shape
        assert S == S2
        n_predictions = len(flow_preds[j])
        flow_loss = 0.0
        for i in range(n_predictions):
            i_weight = gamma ** (n_predictions - i - 1)
            flow_pred = flow_preds[j][i]
            if use_huber_loss:
                i_loss = huber_loss(flow_pred, flow_gt[j], delta=6.0)
            else:
                i_loss = (flow_pred - flow_gt[j]).abs()  # B, S, N, 2
            i_loss = torch.mean(i_loss, dim=3)  # B, S, N
            valid_ = valids[j].clone()
            if loss_only_for_visible:
                valid_ = valid_ * vis[j]
            flow_loss += i_weight * utils.basic.reduce_masked_mean(i_loss, valid_)
        flow_loss = flow_loss / n_predictions
        total_flow_loss += flow_loss
    return total_flow_loss / len(flow_gt)

def sequence_loss_dense(
    flow_preds,
    flow_gt,
    valids,
    vis=None,
    gamma=0.8,
    use_huber_loss=False,
    loss_only_for_visible=False,
):
    """Loss function defined over sequence of flow predictions"""
    total_flow_loss = 0.0
    for j in range(len(flow_gt)):
        # print('flow_gt[j]', flow_gt[j].shape)
        B, S, D, H, W = flow_gt[j].shape
        B, S2, _, H, W = valids[j].shape
        assert S == S2
        n_predictions = len(flow_preds[j])
        flow_loss = 0.0
        # import ipdb; ipdb.set_trace()
        for i in range(n_predictions):
            # print('flow_e[j][i]', flow_preds[j][i].shape)
            i_weight = gamma ** (n_predictions - i - 1)
            flow_pred = flow_preds[j][i] # B,S,2,H,W
            if use_huber_loss:
                i_loss = huber_loss(flow_pred, flow_gt[j], delta=6.0) # B,S,2,H,W
            else:
                i_loss = (flow_pred - flow_gt[j]).abs() # B,S,2,H,W
            i_loss_ = torch.mean(i_loss, dim=2) # B,S,H,W
            valid_ = valids[j].reshape(B,S,H,W)
            # print(' (%d,%d) i_loss_' % (i,j), i_loss_.shape)
            # print(' (%d,%d) valid_' % (i,j), valid_.shape)
            if loss_only_for_visible:
                valid_ = valid_ * vis[j].reshape(B,-1,H,W) # usually B,S,H,W, but maybe B,1,H,W
            flow_loss += i_weight * utils.basic.reduce_masked_mean(i_loss_, valid_, broadcast=True)
            # import ipdb; ipdb.set_trace()
        flow_loss = flow_loss / n_predictions
        total_flow_loss += flow_loss
    return total_flow_loss / len(flow_gt)


def huber_loss(x, y, delta=1.0):
    """Calculate element-wise Huber loss between x and y"""
    diff = x - y
    abs_diff = diff.abs()
    flag = (abs_diff <= delta).float()
    return flag * 0.5 * diff**2 + (1 - flag) * delta * (abs_diff - 0.5 * delta)


def sequence_BCE_loss(vis_preds, vis_gts, valids=None, use_logits=False):
    total_bce_loss = 0.0
    # all_vis_preds = [torch.stack(vp) for vp in vis_preds]
    # all_vis_preds = torch.stack(all_vis_preds)
    # utils.basic.print_stats('all_vis_preds', all_vis_preds)
    for j in range(len(vis_preds)):
        n_predictions = len(vis_preds[j])
        bce_loss = 0.0
        for i in range(n_predictions):
            # utils.basic.print_stats('vis_preds[%d][%d]' % (j,i), vis_preds[j][i])
            # utils.basic.print_stats('vis_gts[%d]' % (i), vis_gts[i])
            if use_logits:
                loss = F.binary_cross_entropy_with_logits(vis_preds[j][i], vis_gts[j], reduction='none')
            else:
                loss = F.binary_cross_entropy(vis_preds[j][i], vis_gts[j], reduction='none')
            if valids is None:
                bce_loss += loss.mean()
            else:
                bce_loss += (loss * valids[j]).mean()
        bce_loss = bce_loss / n_predictions
        total_bce_loss += bce_loss
    return total_bce_loss / len(vis_preds)


# def sequence_BCE_loss_dense(vis_preds, vis_gts):
#     total_bce_loss = 0.0
#     for j in range(len(vis_preds)):
#         n_predictions = len(vis_preds[j])
#         bce_loss = 0.0
#         for i in range(n_predictions):
#             vis_e = vis_preds[j][i]
#             vis_g = vis_gts[j]
#             print('vis_e', vis_e.shape, 'vis_g', vis_g.shape)
#             vis_loss = F.binary_cross_entropy(vis_e, vis_g)
#             bce_loss += vis_loss
#         bce_loss = bce_loss / n_predictions
#         total_bce_loss += bce_loss
#     return total_bce_loss / len(vis_preds)


def sequence_prob_loss(
        tracks: torch.Tensor,
        confidence: torch.Tensor,
        target_points: torch.Tensor,
        visibility: torch.Tensor,
        expected_dist_thresh: float = 12.0,
        use_logits=False,
):
    """Loss for classifying if a point is within pixel threshold of its target."""
    # Points with an error larger than 12 pixels are likely to be useless; marking
    # them as occluded will actually improve Jaccard metrics and give
    # qualitatively better results.
    total_logprob_loss = 0.0
    for j in range(len(tracks)):
        n_predictions = len(tracks[j])
        logprob_loss = 0.0
        for i in range(n_predictions):
            err = torch.sum((tracks[j][i].detach() - target_points[j]) ** 2, dim=-1)
            valid = (err <= expected_dist_thresh**2).float()
            if use_logits:
                loss = F.binary_cross_entropy_with_logits(confidence[j][i], valid, reduction="none")
            else:
                loss = F.binary_cross_entropy(confidence[j][i], valid, reduction="none")
            loss *= visibility[j]
            loss = torch.mean(loss, dim=[1, 2])
            logprob_loss += loss
        logprob_loss = logprob_loss / n_predictions
        total_logprob_loss += logprob_loss
    return total_logprob_loss / len(tracks)

def sequence_prob_loss_dense(
    tracks: torch.Tensor,
    confidence: torch.Tensor,
    target_points: torch.Tensor,
    visibility: torch.Tensor,
    expected_dist_thresh: float = 12.0,
    use_logits=False,
):
    """Loss for classifying if a point is within pixel threshold of its target."""
    # Points with an error larger than 12 pixels are likely to be useless; marking
    # them as occluded will actually improve Jaccard metrics and give
    # qualitatively better results.

    # all_confidence = [torch.stack(vp) for vp in confidence]
    # all_confidence = torch.stack(all_confidence)
    # utils.basic.print_stats('all_confidence', all_confidence)
    
    total_logprob_loss = 0.0
    for j in range(len(tracks)):
        n_predictions = len(tracks[j])
        logprob_loss = 0.0
        for i in range(n_predictions):
            # print('trajs_e', tracks[j][i].shape)
            # print('trajs_g', target_points[j].shape)
            err = torch.sum((tracks[j][i].detach() - target_points[j]) ** 2, dim=2)
            positive = (err <= expected_dist_thresh**2).float()
            # print('conf', confidence[j][i].shape, 'positive', positive.shape)
            if use_logits:
                loss = F.binary_cross_entropy_with_logits(confidence[j][i].squeeze(2), positive, reduction="none")
            else:
                loss = F.binary_cross_entropy(confidence[j][i].squeeze(2), positive, reduction="none")
            loss *= visibility[j].squeeze(2) # B,S,H,W
            loss = torch.mean(loss, dim=[1,2,3])
            logprob_loss += loss
        logprob_loss = logprob_loss / n_predictions
        total_logprob_loss += logprob_loss
    return total_logprob_loss / len(tracks)


def masked_mean(data, mask, dim):
    if mask is None:
        return data.mean(dim=dim, keepdim=True)
    mask = mask.float()
    mask_sum = torch.sum(mask, dim=dim, keepdim=True)
    mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
        mask_sum, min=1.0
    )
    return mask_mean


def masked_mean_var(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
    if mask is None:
        return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
    mask = mask.float()
    mask_sum = torch.sum(mask, dim=dim, keepdim=True)
    mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
        mask_sum, min=1.0
    )
    mask_var = torch.sum(
        mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
    ) / torch.clamp(mask_sum, min=1.0)
    return mask_mean.squeeze(dim), mask_var.squeeze(dim)