Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,699 Bytes
77a88de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import glob, math
import numpy as np
# from scipy import misc
# from scipy import linalg
from PIL import Image
import io
import matplotlib.pyplot as plt
EPS = 1e-6
XMIN = -64.0 # right (neg is left)
XMAX = 64.0 # right
YMIN = -64.0 # down (neg is up)
YMAX = 64.0 # down
ZMIN = -64.0 # forward
ZMAX = 64.0 # forward
def print_stats(name, tensor):
tensor = tensor.astype(np.float32)
print('%s min = %.2f, mean = %.2f, max = %.2f' % (name, np.min(tensor), np.mean(tensor), np.max(tensor)), tensor.shape)
def reduce_masked_mean(x, mask, axis=None, keepdims=False):
# x and mask are the same shape
# returns shape-1
# axis can be a list of axes
prod = x*mask
numer = np.sum(prod, axis=axis, keepdims=keepdims)
denom = EPS+np.sum(mask, axis=axis, keepdims=keepdims)
mean = numer/denom
return mean
def reduce_masked_sum(x, mask, axis=None, keepdims=False):
# x and mask are the same shape
# returns shape-1
# axis can be a list of axes
prod = x*mask
numer = np.sum(prod, axis=axis, keepdims=keepdims)
return numer
def reduce_masked_median(x, mask, keep_batch=False):
# x and mask are the same shape
# returns shape-1
# axis can be a list of axes
if not (x.shape == mask.shape):
print('reduce_masked_median: these shapes should match:', x.shape, mask.shape)
assert(False)
# assert(x.shape == mask.shape)
B = list(x.shape)[0]
if keep_batch:
x = np.reshape(x, [B, -1])
mask = np.reshape(mask, [B, -1])
meds = np.zeros([B], np.float32)
for b in list(range(B)):
xb = x[b]
mb = mask[b]
if np.sum(mb) > 0:
xb = xb[mb > 0]
meds[b] = np.median(xb)
else:
meds[b] = np.nan
return meds
else:
x = np.reshape(x, [-1])
mask = np.reshape(mask, [-1])
if np.sum(mask) > 0:
x = x[mask > 0]
med = np.median(x)
else:
med = np.nan
med = np.array([med], np.float32)
return med
def get_nFiles(path):
return len(glob.glob(path))
def get_file_list(path):
return glob.glob(path)
def rotm2eul(R):
# R is 3x3
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
if sy > 1e-6: # singular
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else:
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
return x, y, z
def rad2deg(rad):
return rad*180.0/np.pi
def deg2rad(deg):
return deg/180.0*np.pi
def eul2rotm(rx, ry, rz):
# copy of matlab, but order of inputs is different
# R = [ cy*cz sy*sx*cz-sz*cx sy*cx*cz+sz*sx
# cy*sz sy*sx*sz+cz*cx sy*cx*sz-cz*sx
# -sy cy*sx cy*cx]
sinz = np.sin(rz)
siny = np.sin(ry)
sinx = np.sin(rx)
cosz = np.cos(rz)
cosy = np.cos(ry)
cosx = np.cos(rx)
r11 = cosy*cosz
r12 = sinx*siny*cosz - cosx*sinz
r13 = cosx*siny*cosz + sinx*sinz
r21 = cosy*sinz
r22 = sinx*siny*sinz + cosx*cosz
r23 = cosx*siny*sinz - sinx*cosz
r31 = -siny
r32 = sinx*cosy
r33 = cosx*cosy
r1 = np.stack([r11,r12,r13],axis=-1)
r2 = np.stack([r21,r22,r23],axis=-1)
r3 = np.stack([r31,r32,r33],axis=-1)
r = np.stack([r1,r2,r3],axis=0)
return r
def wrap2pi(rad_angle):
# puts the angle into the range [-pi, pi]
return np.arctan2(np.sin(rad_angle), np.cos(rad_angle))
def rot2view(rx,ry,rz,x,y,z):
# takes rot angles and 3d position as input
# returns viewpoint angles as output
# (all in radians)
# it will perform strangely if z <= 0
az = wrap2pi(ry - (-np.arctan2(z, x) - 1.5*np.pi))
el = -wrap2pi(rx - (-np.arctan2(z, y) - 1.5*np.pi))
th = -rz
return az, el, th
def invAxB(a,b):
"""
Compute the relative 3d transformation between a and b.
Input:
a -- first pose (homogeneous 4x4 matrix)
b -- second pose (homogeneous 4x4 matrix)
Output:
Relative 3d transformation from a to b.
"""
return np.dot(np.linalg.inv(a),b)
def merge_rt(r, t):
# r is 3 x 3
# t is 3 or maybe 3 x 1
t = np.reshape(t, [3, 1])
rt = np.concatenate((r,t), axis=1)
# rt is 3 x 4
br = np.reshape(np.array([0,0,0,1], np.float32), [1, 4])
# br is 1 x 4
rt = np.concatenate((rt, br), axis=0)
# rt is 4 x 4
return rt
def split_rt(rt):
r = rt[:3,:3]
t = rt[:3,3]
r = np.reshape(r, [3, 3])
t = np.reshape(t, [3, 1])
return r, t
def split_intrinsics(K):
# K is 3 x 4 or 4 x 4
fx = K[0,0]
fy = K[1,1]
x0 = K[0,2]
y0 = K[1,2]
return fx, fy, x0, y0
def merge_intrinsics(fx, fy, x0, y0):
# inputs are shaped []
K = np.eye(4)
K[0,0] = fx
K[1,1] = fy
K[0,2] = x0
K[1,2] = y0
# K is shaped 4 x 4
return K
def scale_intrinsics(K, sx, sy):
fx, fy, x0, y0 = split_intrinsics(K)
fx *= sx
fy *= sy
x0 *= sx
y0 *= sy
return merge_intrinsics(fx, fy, x0, y0)
# def meshgrid(H, W):
# x = np.linspace(0, W-1, W)
# y = np.linspace(0, H-1, H)
# xv, yv = np.meshgrid(x, y)
# return xv, yv
def compute_distance(transform):
"""
Compute the distance of the translational component of a 4x4 homogeneous matrix.
"""
return numpy.linalg.norm(transform[0:3,3])
def radian_l1_dist(e, g):
# if our angles are in [0, 360] we can follow this stack overflow answer:
# https://gamedev.stackexchange.com/questions/4467/comparing-angles-and-working-out-the-difference
# wrap2pi brings the angles to [-180, 180]; adding pi puts them in [0, 360]
e = wrap2pi(e)+np.pi
g = wrap2pi(g)+np.pi
l = np.abs(np.pi - np.abs(np.abs(e-g) - np.pi))
return l
def apply_pix_T_cam(pix_T_cam, xyz):
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
# xyz is shaped B x H*W x 3
# returns xy, shaped B x H*W x 2
N, C = xyz.shape
x, y, z = np.split(xyz, 3, axis=-1)
EPS = 1e-4
z = np.clip(z, EPS, None)
x = (x*fx)/(z)+x0
y = (y*fy)/(z)+y0
xy = np.concatenate([x, y], axis=-1)
return xy
def apply_4x4(RT, XYZ):
# RT is 4 x 4
# XYZ is N x 3
# put into homogeneous coords
X, Y, Z = np.split(XYZ, 3, axis=1)
ones = np.ones_like(X)
XYZ1 = np.concatenate([X, Y, Z, ones], axis=1)
# XYZ1 is N x 4
XYZ1_t = np.transpose(XYZ1)
# this is 4 x N
XYZ2_t = np.dot(RT, XYZ1_t)
# this is 4 x N
XYZ2 = np.transpose(XYZ2_t)
# this is N x 4
XYZ2 = XYZ2[:,:3]
# this is N x 3
return XYZ2
def Ref2Mem(xyz, Z, Y, X):
# xyz is N x 3, in ref coordinates
# transforms ref coordinates into mem coordinates
N, C = xyz.shape
assert(C==3)
mem_T_ref = get_mem_T_ref(Z, Y, X)
xyz = apply_4x4(mem_T_ref, xyz)
return xyz
# def Mem2Ref(xyz_mem, MH, MW, MD):
# # xyz is B x N x 3, in mem coordinates
# # transforms mem coordinates into ref coordinates
# B, N, C = xyz_mem.get_shape().as_list()
# ref_T_mem = get_ref_T_mem(B, MH, MW, MD)
# xyz_ref = utils_geom.apply_4x4(ref_T_mem, xyz_mem)
# return xyz_ref
def get_mem_T_ref(Z, Y, X):
# sometimes we want the mat itself
# note this is not a rigid transform
# for interpretability, let's construct this in two steps...
# translation
center_T_ref = np.eye(4, dtype=np.float32)
center_T_ref[0,3] = -XMIN
center_T_ref[1,3] = -YMIN
center_T_ref[2,3] = -ZMIN
VOX_SIZE_X = (XMAX-XMIN)/float(X)
VOX_SIZE_Y = (YMAX-YMIN)/float(Y)
VOX_SIZE_Z = (ZMAX-ZMIN)/float(Z)
# scaling
mem_T_center = np.eye(4, dtype=np.float32)
mem_T_center[0,0] = 1./VOX_SIZE_X
mem_T_center[1,1] = 1./VOX_SIZE_Y
mem_T_center[2,2] = 1./VOX_SIZE_Z
mem_T_ref = np.dot(mem_T_center, center_T_ref)
return mem_T_ref
def safe_inverse(a):
r, t = split_rt(a)
t = np.reshape(t, [3, 1])
r_transpose = r.T
inv = np.concatenate([r_transpose, -np.matmul(r_transpose, t)], 1)
bottom_row = a[3:4, :] # this is [0, 0, 0, 1]
inv = np.concatenate([inv, bottom_row], 0)
return inv
def get_ref_T_mem(Z, Y, X):
mem_T_ref = get_mem_T_ref(X, Y, X)
# note safe_inverse is inapplicable here,
# since the transform is nonrigid
ref_T_mem = np.linalg.inv(mem_T_ref)
return ref_T_mem
def voxelize_xyz(xyz_ref, Z, Y, X):
# xyz_ref is N x 3
xyz_mem = Ref2Mem(xyz_ref, Z, Y, X)
# this is N x 3
voxels = get_occupancy(xyz_mem, Z, Y, X)
voxels = np.reshape(voxels, [Z, Y, X, 1])
return voxels
def get_inbounds(xyz, Z, Y, X, already_mem=False):
# xyz is H*W x 3
if not already_mem:
xyz = Ref2Mem(xyz, Z, Y, X)
x_valid = np.logical_and(
np.greater_equal(xyz[:,0], -0.5),
np.less(xyz[:,0], float(X)-0.5))
y_valid = np.logical_and(
np.greater_equal(xyz[:,1], -0.5),
np.less(xyz[:,1], float(Y)-0.5))
z_valid = np.logical_and(
np.greater_equal(xyz[:,2], -0.5),
np.less(xyz[:,2], float(Z)-0.5))
inbounds = np.logical_and(np.logical_and(x_valid, y_valid), z_valid)
return inbounds
def sub2ind3d_zyx(depth, height, width, d, h, w):
# same as sub2ind3d, but inputs in zyx order
# when gathering/scattering with these inds, the tensor should be Z x Y x X
return d*height*width + h*width + w
def sub2ind3d_yxz(height, width, depth, h, w, d):
return h*width*depth + w*depth + d
# def ind2sub(height, width, ind):
# # int input
# y = int(ind / height)
# x = ind % height
# return y, x
def get_occupancy(xyz_mem, Z, Y, X):
# xyz_mem is N x 3
# we want to fill a voxel tensor with 1's at these inds
inbounds = get_inbounds(xyz_mem, Z, Y, X, already_mem=True)
inds = np.where(inbounds)
xyz_mem = np.reshape(xyz_mem[inds], [-1, 3])
# xyz_mem is N x 3
# this is more accurate than a cast/floor, but runs into issues when Y==0
xyz_mem = np.round(xyz_mem).astype(np.int32)
x = xyz_mem[:,0]
y = xyz_mem[:,1]
z = xyz_mem[:,2]
voxels = np.zeros([Z, Y, X], np.float32)
voxels[z, y, x] = 1.0
return voxels
def pixels2camera(x,y,z,fx,fy,x0,y0):
# x and y are locations in pixel coordinates, z is a depth image in meters
# their shapes are H x W
# fx, fy, x0, y0 are scalar camera intrinsics
# returns xyz, sized [B,H*W,3]
H, W = z.shape
fx = np.reshape(fx, [1,1])
fy = np.reshape(fy, [1,1])
x0 = np.reshape(x0, [1,1])
y0 = np.reshape(y0, [1,1])
# unproject
x = ((z+EPS)/fx)*(x-x0)
y = ((z+EPS)/fy)*(y-y0)
x = np.reshape(x, [-1])
y = np.reshape(y, [-1])
z = np.reshape(z, [-1])
xyz = np.stack([x,y,z], axis=1)
return xyz
def depth2pointcloud(z, pix_T_cam):
H = z.shape[0]
W = z.shape[1]
y, x = meshgrid2d(H, W)
z = np.reshape(z, [H, W])
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
xyz = pixels2camera(x, y, z, fx, fy, x0, y0)
return xyz
def meshgrid2d(Y, X):
grid_y = np.linspace(0.0, Y-1, Y)
grid_y = np.reshape(grid_y, [Y, 1])
grid_y = np.tile(grid_y, [1, X])
grid_x = np.linspace(0.0, X-1, X)
grid_x = np.reshape(grid_x, [1, X])
grid_x = np.tile(grid_x, [Y, 1])
# outputs are Y x X
return grid_y, grid_x
def gridcloud3d(Y, X, Z):
x_ = np.linspace(0, X-1, X)
y_ = np.linspace(0, Y-1, Y)
z_ = np.linspace(0, Z-1, Z)
y, x, z = np.meshgrid(y_, x_, z_, indexing='ij')
x = np.reshape(x, [-1])
y = np.reshape(y, [-1])
z = np.reshape(z, [-1])
xyz = np.stack([x,y,z], axis=1).astype(np.float32)
return xyz
def gridcloud2d(Y, X):
x_ = np.linspace(0, X-1, X)
y_ = np.linspace(0, Y-1, Y)
y, x = np.meshgrid(y_, x_, indexing='ij')
x = np.reshape(x, [-1])
y = np.reshape(y, [-1])
xy = np.stack([x,y], axis=1).astype(np.float32)
return xy
def normalize(im):
im = im - np.min(im)
im = im / np.max(im)
return im
def wrap2pi(rad_angle):
# rad_angle can be any shape
# puts the angle into the range [-pi, pi]
return np.arctan2(np.sin(rad_angle), np.cos(rad_angle))
def convert_occ_to_height(occ):
Z, Y, X, C = occ.shape
assert(C==1)
height = np.linspace(float(Y), 1.0, Y)
height = np.reshape(height, [1, Y, 1, 1])
height = np.max(occ*height, axis=1)/float(Y)
height = np.reshape(height, [Z, X, C])
return height
def create_depth_image(xy, Z, H, W):
# turn the xy coordinates into image inds
xy = np.round(xy)
# lidar reports a sphere of measurements
# only use the inds that are within the image bounds
# also, only use forward-pointing depths (Z > 0)
valid = (xy[:,0] < W-1) & (xy[:,1] < H-1) & (xy[:,0] >= 0) & (xy[:,1] >= 0) & (Z[:] > 0)
# gather these up
xy = xy[valid]
Z = Z[valid]
inds = sub2ind(H,W,xy[:,1],xy[:,0])
depth = np.zeros((H*W), np.float32)
for (index, replacement) in zip(inds, Z):
depth[index] = replacement
depth[np.where(depth == 0.0)] = 70.0
depth = np.reshape(depth, [H, W])
return depth
def vis_depth(depth, maxdepth=80.0, log_vis=True):
depth[depth<=0.0] = maxdepth
if log_vis:
depth = np.log(depth)
depth = np.clip(depth, 0, np.log(maxdepth))
else:
depth = np.clip(depth, 0, maxdepth)
depth = (depth*255.0).astype(np.uint8)
return depth
def preprocess_color(x):
return x.astype(np.float32) * 1./255 - 0.5
def convert_box_to_ref_T_obj(boxes):
shape = boxes.shape
boxes = boxes.reshape(-1,9)
rots = [eul2rotm(rx,ry,rz)
for rx,ry,rz in boxes[:,6:]]
rots = np.stack(rots,axis=0)
trans = boxes[:,:3]
ref_T_objs = [merge_rt(rot,tran)
for rot,tran in zip(rots,trans)]
ref_T_objs = np.stack(ref_T_objs,axis=0)
ref_T_objs = ref_T_objs.reshape(shape[:-1]+(4,4))
ref_T_objs = ref_T_objs.astype(np.float32)
return ref_T_objs
def get_rot_from_delta(delta, yaw_only=False):
dx = delta[:,0]
dy = delta[:,1]
dz = delta[:,2]
bot_hyp = np.sqrt(dz**2 + dx**2)
# top_hyp = np.sqrt(bot_hyp**2 + dy**2)
pitch = -np.arctan2(dy, bot_hyp)
yaw = np.arctan2(dz, dx)
if yaw_only:
rot = [eul2rotm(0,y,0) for y in yaw]
else:
rot = [eul2rotm(0,y,p) for (p,y) in zip(pitch,yaw)]
rot = np.stack(rot)
# rot is B x 3 x 3
return rot
def im2col(im, psize):
n_channels = 1 if len(im.shape) == 2 else im.shape[0]
(n_channels, rows, cols) = (1,) * (3 - len(im.shape)) + im.shape
im_pad = np.zeros((n_channels,
int(math.ceil(1.0 * rows / psize) * psize),
int(math.ceil(1.0 * cols / psize) * psize)))
im_pad[:, 0:rows, 0:cols] = im
final = np.zeros((im_pad.shape[1], im_pad.shape[2], n_channels,
psize, psize))
for c in np.arange(n_channels):
for x in np.arange(psize):
for y in np.arange(psize):
im_shift = np.vstack(
(im_pad[c, x:], im_pad[c, :x]))
im_shift = np.column_stack(
(im_shift[:, y:], im_shift[:, :y]))
final[x::psize, y::psize, c] = np.swapaxes(
im_shift.reshape(int(im_pad.shape[1] / psize), psize,
int(im_pad.shape[2] / psize), psize), 1, 2)
return np.squeeze(final[0:rows - psize + 1, 0:cols - psize + 1])
def filter_discontinuities(depth, filter_size=9, thresh=10):
H, W = list(depth.shape)
# Ensure that filter sizes are okay
assert filter_size % 2 == 1, "Can only use odd filter sizes."
# Compute discontinuities
offset = int((filter_size - 1) / 2)
patches = 1.0 * im2col(depth, filter_size)
mids = patches[:, :, offset, offset]
mins = np.min(patches, axis=(2, 3))
maxes = np.max(patches, axis=(2, 3))
discont = np.maximum(np.abs(mins - mids),
np.abs(maxes - mids))
mark = discont > thresh
# Account for offsets
final_mark = np.zeros((H, W), dtype=np.uint16)
final_mark[offset:offset + mark.shape[0],
offset:offset + mark.shape[1]] = mark
return depth * (1 - final_mark)
def argmax2d(tensor):
Y, X = list(tensor.shape)
# flatten the Tensor along the height and width axes
flat_tensor = tensor.reshape(-1)
# argmax of the flat tensor
argmax = np.argmax(flat_tensor)
# convert the indices into 2d coordinates
argmax_y = argmax // X # row
argmax_x = argmax % X # col
return argmax_y, argmax_x
def plot_traj_3d(traj):
# traj is S x 3
# print('traj', traj.shape)
S, C = list(traj.shape)
assert(C==3)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = [plt.cm.RdYlBu(i) for i in np.linspace(0,1,S)]
# print('colors', colors)
xs = traj[:,0]
ys = -traj[:,1]
zs = traj[:,2]
ax.scatter(xs, zs, ys, s=30, c=colors, marker='o', alpha=1.0, edgecolors=(0,0,0))#, color=color_map[n])
ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')
ax.set_xlim(0,1)
ax.set_ylim(0,1) # this is really Z
ax.set_zlim(-1,0) # this is really Y
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = np.array(Image.open(buf)) # H x W x 4
image = image[:,:,:3]
plt.close()
return image
def camera2pixels(xyz, pix_T_cam):
# xyz is shaped N x 3
# returns xy, shaped N x 2
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
x, y, z = xyz[:,0], xyz[:,1], xyz[:,2]
EPS = 1e-4
z = np.clip(z, EPS, None)
x = (x*fx)/z + x0
y = (y*fy)/z + y0
xy = np.stack([x, y], axis=-1)
return xy
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, -clip_flow, clip_flow) / clip_flow
# flow_uv = np.clamp(flow, -clip, clip)/clip
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
|