alltracker / app.py
aharley's picture
added twist
a948769
raw
history blame
46.6 kB
# this is built from https://huggingface.co/spaces/facebook/cotracker/blob/main/app.py
# which was built from https://github.com/cvlab-kaist/locotrack/blob/main/demo/demo.py
import os
import sys
import uuid
from concurrent.futures import ThreadPoolExecutor
import subprocess
from nets.blocks import InputPadder
import gradio as gr
import mediapy
import numpy as np
import cv2
import matplotlib
import torch
import colorsys
import random
from typing import List, Optional, Sequence, Tuple
import spaces
import numpy as np
import utils.basic
import utils.improc
import PIL.Image
# Generate random colormaps for visualizing different points.
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
"""Gets colormap for points."""
colors = []
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
hue = i / 360.0
lightness = (50 + np.random.rand() * 10) / 100.0
saturation = (90 + np.random.rand() * 10) / 100.0
color = colorsys.hls_to_rgb(hue, lightness, saturation)
colors.append(
(int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
)
random.shuffle(colors)
return colors
# def get_points_on_a_grid(
# size: int,
# extent: Tuple[float, ...],
# center: Optional[Tuple[float, ...]] = None,
# device: Optional[torch.device] = torch.device("cpu"),
# ):
# r"""Get a grid of points covering a rectangular region
# `get_points_on_a_grid(size, extent)` generates a :attr:`size` by
# :attr:`size` grid fo points distributed to cover a rectangular area
# specified by `extent`.
# The `extent` is a pair of integer :math:`(H,W)` specifying the height
# and width of the rectangle.
# Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
# specifying the vertical and horizontal center coordinates. The center
# defaults to the middle of the extent.
# Points are distributed uniformly within the rectangle leaving a margin
# :math:`m=W/64` from the border.
# It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
# points :math:`P_{ij}=(x_i, y_i)` where
# .. math::
# P_{ij} = \left(
# c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
# c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
# \right)
# Points are returned in row-major order.
# Args:
# size (int): grid size.
# extent (tuple): height and with of the grid extent.
# center (tuple, optional): grid center.
# device (str, optional): Defaults to `"cpu"`.
# Returns:
# Tensor: grid.
# """
# if size == 1:
# return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]
# if center is None:
# center = [extent[0] / 2, extent[1] / 2]
# margin = extent[1] / 64
# range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
# range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
# grid_y, grid_x = torch.meshgrid(
# torch.linspace(*range_y, size, device=device),
# torch.linspace(*range_x, size, device=device),
# indexing="ij",
# )
# return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)
@spaces.GPU
def paint_point_track_gpu_scatter(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
colormap: Optional[List[Tuple[int, int, int]]] = None,
rate: int = 1,
# sharpness: float = 0.1,
) -> np.ndarray:
print('starting vis')
device = "cuda" if torch.cuda.is_available() else "cpu"
frames_t = torch.from_numpy(frames).float().permute(0, 3, 1, 2).to(device) # [T,C,H,W]
frames_t = frames_t * 0.5 # darken, to see the point tracks better
point_tracks_t = torch.from_numpy(point_tracks).to(device) # [P,T,2]
visibles_t = torch.from_numpy(visibles).to(device) # [P,T]
T, C, H, W = frames_t.shape
P = point_tracks.shape[0]
if colormap is None:
colormap = get_colors(P)
colors = torch.tensor(colormap, dtype=torch.float32, device=device) # [P,3]
if rate==1:
radius = 1
elif rate==2:
radius = 1
elif rate== 4:
radius = 2
elif rate== 8:
radius = 4
else:
radius = 6
# radius = max(1, int(np.sqrt(rate)))
sharpness = 0.15 + 0.05 * np.log2(rate)
D = radius * 2 + 1
y = torch.arange(D, device=device).float()[:, None] - radius
x = torch.arange(D, device=device).float()[None, :] - radius
dist2 = x**2 + y**2
icon = torch.clamp(1 - (dist2 - (radius**2) / 2.0) / (radius * 2 * sharpness), 0, 1) # [D,D]
icon = icon.view(1, D, D)
dx = torch.arange(-radius, radius + 1, device=device)
dy = torch.arange(-radius, radius + 1, device=device)
disp_y, disp_x = torch.meshgrid(dy, dx, indexing="ij") # [D,D]
for t in range(T):
mask = visibles_t[:, t] # [P]
if mask.sum() == 0:
continue
xy = point_tracks_t[mask, t] + 0.5 # [N,2]
xy[:, 0] = xy[:, 0].clamp(0, W - 1)
xy[:, 1] = xy[:, 1].clamp(0, H - 1)
colors_now = colors[mask] # [N,3]
N = xy.shape[0]
cx = xy[:, 0].long() # [N]
cy = xy[:, 1].long()
x_grid = cx[:, None, None] + disp_x # [N,D,D]
y_grid = cy[:, None, None] + disp_y # [N,D,D]
valid = (x_grid >= 0) & (x_grid < W) & (y_grid >= 0) & (y_grid < H)
x_valid = x_grid[valid] # [K]
y_valid = y_grid[valid]
icon_weights = icon.expand(N, D, D)[valid] # [K]
colors_valid = colors_now[:, :, None, None].expand(N, 3, D, D).permute(1, 0, 2, 3)[
:, valid
] # [3, K]
idx_flat = (y_valid * W + x_valid).long() # [K]
accum = torch.zeros_like(frames_t[t]) # [3, H, W]
weight = torch.zeros(1, H * W, device=device) # [1, H*W]
img_flat = accum.view(C, -1) # [3, H*W]
weighted_colors = colors_valid * icon_weights # [3, K]
img_flat.scatter_add_(1, idx_flat.unsqueeze(0).expand(C, -1), weighted_colors)
weight.scatter_add_(1, idx_flat.unsqueeze(0), icon_weights.unsqueeze(0))
weight = weight.view(1, H, W)
# accum = accum / (weight + 1e-6) # avoid division by 0
# frames_t[t] = torch.where(weight > 0, accum, frames_t[t])
# frames_t[t] = frames_t[t] * (1 - weight) + accum
# alpha = weight.clamp(0, 1)
# alpha = weight.clamp(0, 1) * 0.9 # transparency
alpha = weight.clamp(0, 1) # transparency
accum = accum / (weight + 1e-6) # [3, H, W]
frames_t[t] = frames_t[t] * (1 - alpha) + accum * alpha
# img_flat = frames_t[t].view(C, -1) # [3, H*W]
# weighted_colors = colors_valid * icon_weights # [3, K]
# img_flat.scatter_add_(1, idx_flat.unsqueeze(0).expand(C, -1), weighted_colors)
print('done vis')
return frames_t.clamp(0, 255).byte().permute(0, 2, 3, 1).cpu().numpy()
def paint_point_track_gpu(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
colormap: Optional[List[Tuple[int, int, int]]] = None,
radius: int = 2,
sharpness: float = 0.15,
) -> np.ndarray:
device = "cuda" if torch.cuda.is_available() else "cpu"
# Setup
frames_t = torch.from_numpy(frames).float().permute(0, 3, 1, 2).to(device) # [T,C,H,W]
point_tracks_t = torch.from_numpy(point_tracks).to(device) # [P,T,2]
visibles_t = torch.from_numpy(visibles).to(device) # [P,T]
T, C, H, W = frames_t.shape
P = point_tracks.shape[0]
# Colors
if colormap is None:
colormap = get_colors(P) # or any fixed list of RGB
colors = torch.tensor(colormap, dtype=torch.float32, device=device) # [P,3]
# Icon kernel [K,K]
D = radius * 2 + 1
y = torch.arange(D, device=device).float()[:, None] - radius - 1
x = torch.arange(D, device=device).float()[None, :] - radius - 1
dist2 = x**2 + y**2
icon = torch.clamp(1 - (dist2 - (radius**2) / 2.0) / (radius * 2 * sharpness), 0, 1) # [D,D]
icon = icon.unsqueeze(0) # [1,D,D] for broadcasting
# Create coordinate grids
for t in range(T):
image = frames_t[t]
# Select visible points
visible_mask = visibles_t[:, t]
pt_xy = point_tracks_t[visible_mask, t] # [N,2]
colors_t = colors[visible_mask] # [N,3]
N = pt_xy.shape[0]
if N == 0:
continue
# Integer centers
pt_xy = pt_xy + 0.5 # correct center offset
pt_xy[:, 0] = pt_xy[:, 0].clamp(0, W - 1)
pt_xy[:, 1] = pt_xy[:, 1].clamp(0, H - 1)
ix = pt_xy[:, 0].long() # [N]
iy = pt_xy[:, 1].long()
# Build grid of indices for patch around each point
dx = torch.arange(-radius, radius + 1, device=device)
dy = torch.arange(-radius, radius + 1, device=device)
dx_grid, dy_grid = torch.meshgrid(dx, dy, indexing='ij')
dx_flat = dx_grid.reshape(-1)
dy_flat = dy_grid.reshape(-1)
patch_x = ix[:, None] + dx_flat[None, :] # [N,K*K]
patch_y = iy[:, None] + dy_flat[None, :] # [N,K*K]
# Mask out-of-bounds
valid = (patch_x >= 0) & (patch_x < W) & (patch_y >= 0) & (patch_y < H)
flat_idx = (patch_y * W + patch_x).long() # [N,K*K]
# Flatten icon and colors
icon_flat = icon.view(1, -1) # [1, K*K]
color_patches = colors_t[:, :, None] * icon_flat[:, None, :] # [N,3,K*K]
# Flatten to write into 1D image
img_flat = image.view(C, -1) # [3, H*W]
for i in range(N):
valid_mask = valid[i]
idxs = flat_idx[i][valid_mask]
vals = color_patches[i, :, valid_mask] # [3, valid_count]
img_flat[:, idxs] += vals
out_frames = frames_t.clamp(0, 255).byte().permute(0, 2, 3, 1).cpu().numpy()
return out_frames
def paint_point_track_parallel(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
colormap: Optional[List[Tuple[int, int, int]]] = None,
max_workers: int = 8,
) -> np.ndarray:
num_points, num_frames = point_tracks.shape[:2]
if colormap is None:
colormap = get_colors(num_colors=num_points)
height, width = frames.shape[1:3]
radius = 1
print('radius', radius)
diam = radius * 2 + 1
# Precompute the icon and its bilinear components
quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1)
quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1)
icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0
sharpness = 0.15
icon = np.clip(icon / (radius * 2 * sharpness), 0, 1)
icon = 1 - icon[:, :, np.newaxis]
icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)])
icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)])
icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)])
icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)])
def draw_point(image, i, t):
if not visibles[i, t]:
return
x, y = point_tracks[i, t, :] + 0.5
x = min(max(x, 0.0), width)
y = min(max(y, 0.0), height)
x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32)
x2, y2 = x1 + 1, y1 + 1
patch = (
icon1 * (x2 - x) * (y2 - y)
+ icon2 * (x2 - x) * (y - y1)
+ icon3 * (x - x1) * (y2 - y)
+ icon4 * (x - x1) * (y - y1)
)
x_ub = x1 + 2 * radius + 2
y_ub = y1 + 2 * radius + 2
image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[y1:y_ub, x1:x_ub, :] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :]
video = frames.copy()
for t in range(num_frames):
image = np.pad(
video[t],
[(radius + 1, radius + 1), (radius + 1, radius + 1), (0, 0)],
)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(draw_point, image, i, t) for i in range(num_points)]
_ = [f.result() for f in futures] # wait for all threads
video[t] = image[radius + 1 : -radius - 1, radius + 1 : -radius - 1].astype(np.uint8)
return video
def paint_point_track(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
colormap: Optional[List[Tuple[int, int, int]]] = None,
) -> np.ndarray:
"""Converts a sequence of points to color code video.
Args:
frames: [num_frames, height, width, 3], np.uint8, [0, 255]
point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height]
visibles: [num_points, num_frames], bool
colormap: colormap for points, each point has a different RGB color.
Returns:
video: [num_frames, height, width, 3], np.uint8, [0, 255]
"""
num_points, num_frames = point_tracks.shape[0:2]
if colormap is None:
colormap = get_colors(num_colors=num_points)
height, width = frames.shape[1:3]
dot_size_as_fraction_of_min_edge = 0.015
# radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge))
radius = 2
# print('radius', radius)
diam = radius * 2 + 1
quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1)
quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1)
icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0
sharpness = 0.15
icon = np.clip(icon / (radius * 2 * sharpness), 0, 1)
icon = 1 - icon[:, :, np.newaxis]
icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)])
icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)])
icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)])
icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)])
video = frames.copy()
for t in range(num_frames):
# Pad so that points that extend outside the image frame don't crash us
image = np.pad(
video[t],
[
(radius + 1, radius + 1),
(radius + 1, radius + 1),
(0, 0),
],
)
for i in range(num_points):
# The icon is centered at the center of a pixel, but the input coordinates
# are raster coordinates. Therefore, to render a point at (1,1) (which
# lies on the corner between four pixels), we need 1/4 of the icon placed
# centered on the 0'th row, 0'th column, etc. We need to subtract
# 0.5 to make the fractional position come out right.
x, y = point_tracks[i, t, :] + 0.5
x = min(max(x, 0.0), width)
y = min(max(y, 0.0), height)
if visibles[i, t]:
x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32)
x2, y2 = x1 + 1, y1 + 1
# bilinear interpolation
patch = (
icon1 * (x2 - x) * (y2 - y)
+ icon2 * (x2 - x) * (y - y1)
+ icon3 * (x - x1) * (y2 - y)
+ icon4 * (x - x1) * (y - y1)
)
x_ub = x1 + 2 * radius + 2
y_ub = y1 + 2 * radius + 2
image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[
y1:y_ub, x1:x_ub, :
] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :]
# Remove the pad
video[t] = image[
radius + 1 : -radius - 1, radius + 1 : -radius - 1
].astype(np.uint8)
return video
PREVIEW_WIDTH = 1024 # Width of the preview video
PREVIEW_HEIGHT = 1024
# VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
POINT_SIZE = 1 # Size of the query point in the preview video
FRAME_LIMIT = 600 # Limit the number of frames to process
# def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
# print(f"You selected {(evt.index[0], evt.index[1], frame_num)}")
# current_frame = video_queried_preview[int(frame_num)]
# # Get the mouse click
# query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))
# # Choose the color for the point from matplotlib colormap
# color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
# color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
# # print(f"Color: {color}")
# query_points_color[int(frame_num)].append(color)
# # Draw the point on the frame
# x, y = evt.index
# current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)
# # Update the frame
# video_queried_preview[int(frame_num)] = current_frame_draw
# # Update the query count
# query_count += 1
# return (
# current_frame_draw, # Updated frame for preview
# video_queried_preview, # Updated preview video
# query_points, # Updated query points
# query_points_color, # Updated query points color
# query_count # Updated query count
# )
# def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
# if len(query_points[int(frame_num)]) == 0:
# return (
# video_queried_preview[int(frame_num)],
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# )
# # Get the last point
# query_points[int(frame_num)].pop(-1)
# query_points_color[int(frame_num)].pop(-1)
# # Redraw the frame
# current_frame_draw = video_preview[int(frame_num)].copy()
# for point, color in zip(query_points[int(frame_num)], query_points_color[int(frame_num)]):
# x, y, _ = point
# current_frame_draw = cv2.circle(current_frame_draw, (x, y), POINT_SIZE, color, -1)
# # Update the query count
# query_count -= 1
# # Update the frame
# video_queried_preview[int(frame_num)] = current_frame_draw
# return (
# current_frame_draw, # Updated frame for preview
# video_queried_preview, # Updated preview video
# query_points, # Updated query points
# query_points_color, # Updated query points color
# query_count # Updated query count
# )
# def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
# query_count -= len(query_points[int(frame_num)])
# query_points[int(frame_num)] = []
# query_points_color[int(frame_num)] = []
# video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()
# return (
# video_preview[int(frame_num)], # Set the preview frame to the original frame
# video_queried_preview,
# query_points, # Cleared query points
# query_points_color, # Cleared query points color
# query_count # New query count
# )
# def clear_all_fn(frame_num, video_preview):
# return (
# video_preview[int(frame_num)],
# video_preview.copy(),
# [[] for _ in range(len(video_preview))],
# [[] for _ in range(len(video_preview))],
# 0
# )
def choose_frame(frame_num, video_preview_array):
return video_preview_array[int(frame_num)]
def choose_rate1(video_preview, video_fps, tracks, visibs):
return choose_rate(1, video_preview, video_fps, tracks, visibs)
def choose_rate2(video_preview, video_fps, tracks, visibs):
return choose_rate(2, video_preview, video_fps, tracks, visibs)
def choose_rate4(video_preview, video_fps, tracks, visibs):
return choose_rate(4, video_preview, video_fps, tracks, visibs)
def choose_rate8(video_preview, video_fps, tracks, visibs):
return choose_rate(8, video_preview, video_fps, tracks, visibs)
# def choose_rate16(video_preview, video_fps, tracks, visibs):
# return choose_rate(16, video_preview, video_fps, tracks, visibs)
def choose_rate(rate, video_preview, video_fps, tracks, visibs):
print('rate', rate)
print('video_preview', video_preview.shape)
T, H, W,_ = video_preview.shape
tracks_ = tracks.reshape(H,W,T,2)[::rate,::rate].reshape(-1,T,2)
visibs_ = visibs.reshape(H,W,T)[::rate,::rate].reshape(-1,T)
return paint_video(video_preview, video_fps, tracks_, visibs_, rate=rate)
# return video_preview_array[int(frame_num)]
def preprocess_video_input(video_path):
video_arr = mediapy.read_video(video_path)
video_fps = video_arr.metadata.fps
num_frames = video_arr.shape[0]
if num_frames > FRAME_LIMIT:
gr.Warning(f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.", duration=5)
video_arr = video_arr[:FRAME_LIMIT]
num_frames = FRAME_LIMIT
height, width = video_arr.shape[1:3]
if height > width:
new_height, new_width = PREVIEW_HEIGHT, int(PREVIEW_WIDTH * width / height)
else:
new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH
if height*width > 768*1024:
new_height = new_height*3//4
new_width = new_width*3//4
new_height, new_width = new_height//16 * 16, new_width//16 * 16 # make it divisible by 16, partly to satisfy ffmpeg
preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
# input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)
# input_video = video_arr
input_video = preview_video
preview_video = np.array(preview_video)
input_video = np.array(input_video)
interactive = True
return (
video_arr, # Original video
preview_video, # Original preview video, resized for faster processing
preview_video.copy(), # Copy of preview video for visualization
input_video, # Resized video input for model
# None, # video_feature, # Extracted feature
video_fps, # Set the video FPS
# gr.update(open=True), # open/close the video input drawer
# tracking_mode, # Set the tracking mode
preview_video[0], # Set the preview frame to the first frame
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), # Set slider interactive
[[] for _ in range(num_frames)], # Set query_points to empty
[[] for _ in range(num_frames)], # Set query_points_color to empty
[[] for _ in range(num_frames)],
0, # Set query count to 0
gr.update(interactive=interactive), # Make the buttons interactive
gr.update(interactive=interactive),
gr.update(interactive=interactive),
gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True),
)
def paint_video(video_preview, video_fps, tracks, visibs, rate=1):
print('video_preview', video_preview.shape)
T, H, W, _ = video_preview.shape
query_count = tracks.shape[0]
cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
query_points_color = [[]]
for i in range(query_count):
# Choose the color for the point from matplotlib colormap
color = cmap(i / float(query_count))
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
query_points_color[0].append(color)
# make color array
colors = []
for frame_colors in query_points_color:
colors.extend(frame_colors)
colors = np.array(colors)
painted_video = paint_point_track_gpu_scatter(video_preview,tracks,visibs,colors,rate=rate)#=max(rate//2,1))
# save video
video_file_name = uuid.uuid4().hex + ".mp4"
video_path = os.path.join(os.path.dirname(__file__), "tmp")
video_file_path = os.path.join(video_path, video_file_name)
os.makedirs(video_path, exist_ok=True)
if False:
mediapy.write_video(video_file_path, painted_video, fps=video_fps)
else:
for ti in range(T):
temp_out_f = '%s/%03d.jpg' % (video_path, ti)
# temp_out_f = '%s/%03d.png' % (video_path, ti)
im = PIL.Image.fromarray(painted_video[ti])
# im.save(temp_out_f, "PNG", subsampling=0, quality=80)
im.save(temp_out_f)
print('saved', temp_out_f)
# os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.png" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.jpg" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
print('saved', video_file_path)
for ti in range(T):
# temp_out_f = '%s/%03d.png' % (video_path, ti)
temp_out_f = '%s/%03d.jpg' % (video_path, ti)
os.remove(temp_out_f)
print('deleted', temp_out_f)
return video_file_path
@spaces.GPU
def track(
video_preview,
video_input,
video_fps,
query_frame,
query_points,
query_points_color,
query_count,
):
# tracking_mode = 'selected'
# if query_count == 0:
# tracking_mode = 'grid'
# print('query_frames', query_frames)
# query_frame = int(query_frames[0])
# # query_frame = 0
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float if device == "cuda" else torch.float
print("0 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# # Convert query points to tensor, normalize to input resolution
# if tracking_mode!='grid':
# query_points_tensor = []
# for frame_points in query_points:
# query_points_tensor.extend(frame_points)
# query_points_tensor = torch.tensor(query_points_tensor).float()
# query_points_tensor *= torch.tensor([
# VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1
# ]) / torch.tensor([
# [video_preview.shape[2], video_preview.shape[1], 1]
# ])
# query_points_tensor = query_points_tensor[None].flip(-1).to(device, dtype) # xyt -> tyx
# query_points_tensor = query_points_tensor[:, :, [0, 2, 1]] # tyx -> txy
video_input = torch.tensor(video_input).unsqueeze(0).to(dtype)
print("1 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online")
# model = model.to(device)
from nets.alltracker import Net
model = Net(16)
url = "https://huggingface.co/aharley/alltracker/resolve/main/alltracker.pth"
state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
model.load_state_dict(state_dict['model'], strict=True)
print('loaded weights from', url)
model = model.to(device)
print("2 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
video_input = video_input.permute(0, 1, 4, 2, 3)
print('video_input', video_input.shape)
# model(video_input, iters=4, sw=None, is_training=False)
# # model(video_chunk=video_input, is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid)
_, T, _, H, W = video_input.shape
utils.basic.print_stats('video_input', video_input)
print("3 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
grid_xy = utils.basic.gridcloud2d(1, H, W, norm=False, device='cpu:0').float() # 1,H*W,2
grid_xy = grid_xy.permute(0,2,1).reshape(1,1,2,H,W) # 1,1,2,H,W
print("4 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# if tracking_mode=='grid':
# xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
# queries = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
# add_support_grid=False
# cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
# query_points_color = [[]]
# query_count = queries.shape[1]
# for i in range(query_count):
# # Choose the color for the point from matplotlib colormap
# color = cmap(i / float(query_count))
# color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
# query_points_color[0].append(color)
# else:
# queries = query_points_tensor
# add_support_grid=True
# query_frame = 0
torch.cuda.empty_cache()
with torch.no_grad():
utils.basic.print_stats('video_input', video_input)
if query_frame < T-1:
flows_e, visconf_maps_e, _, _ = \
model(video_input[:, query_frame:], iters=4, sw=None, is_training=False)
traj_maps_e = flows_e.cpu() + grid_xy # B,Tf,2,H,W
visconf_maps_e = visconf_maps_e.cpu()
else:
traj_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
visconf_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
if query_frame > 0:
backward_flows_e, backward_visconf_maps_e, _, _ = \
model(video_input[:, :query_frame+1].flip([1]), iters=4, sw=None, is_training=False)
backward_traj_maps_e = backward_flows_e.cpu() + grid_xy # B,Tb,2,H,W, reversed
backward_visconf_maps_e = backward_visconf_maps_e.cpu()
backward_traj_maps_e = backward_traj_maps_e.flip([1]) # flip time
backward_visconf_maps_e = backward_visconf_maps_e.flip([1]) # flip time
if query_frame < T-1:
backward_traj_maps_e = backward_traj_maps_e[:, :-1] # drop the overlapped frame
backward_visconf_maps_e = backward_visconf_maps_e[:, :-1] # drop the overlapped frame
traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
# if query_frame < T-1:
# flows_e, visconf_maps_e, _, _ = \
# model.forward_sliding(video_input[:, query_frame:], iters=4, sw=None, is_training=False)
# traj_maps_e = flows_e + grid_xy # B,Tf,2,H,W
# print("5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# else:
# traj_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
# visconf_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
# if query_frame > 0:
# backward_flows_e, backward_visconf_maps_e, _, _ = \
# model.forward_sliding(video_input[:, :query_frame+1].flip([1]), iters=4, sw=None, is_training=False)
# backward_traj_maps_e = backward_flows_e + grid_xy # B,Tb,2,H,W, reversed
# backward_traj_maps_e = backward_traj_maps_e.flip([1]) # flip time
# backward_visconf_maps_e = backward_visconf_maps_e.flip([1]) # flip time
# if query_frame < T-1:
# backward_traj_maps_e = backward_traj_maps_e[:, :-1] # drop the overlapped frame
# backward_visconf_maps_e = backward_visconf_maps_e[:, :-1] # drop the overlapped frame
# traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
# visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
print("6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# for ind in range(0, video_input.shape[1] - model.step, model.step):
# pred_tracks, pred_visibility = model(
# video_chunk=video_input[:, ind : ind + model.step * 2],
# grid_size=0,
# queries=queries,
# add_support_grid=add_support_grid
# ) # B T N 2, B T N 1
# tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))[0].permute(1, 0, 2).cpu().numpy()
# pred_occ = pred_visibility[0].permute(1, 0).cpu().numpy()
# # make color array
# colors = []
# for frame_colors in query_points_color:
# colors.extend(frame_colors)
# colors = np.array(colors)
# traj_maps_e = traj_maps_e[:,:,:,::4,::4] # subsample
# visconf_maps_e = visconf_maps_e[:,:,:,::4,::4] # subsample
# traj_maps_e = traj_maps_e[:,:,:,::2,::2] # subsample
# visconf_maps_e = visconf_maps_e[:,:,:,::2,::2] # subsample
tracks = traj_maps_e.permute(0,3,4,1,2).reshape(-1,T,2).numpy()
visibs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
confs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
visibs = (visibs * confs) > 0.3 # N,T
# visibs = (confs) > 0.1 # N,T
# sc = (np.array([video_preview.shape[2], video_preview.shape[1]]) / np.array([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]])).reshape(1,1,2)
# print('sc', sc)
# tracks = tracks * sc
return paint_video(video_preview, video_fps, tracks, visibs), tracks, visibs, gr.update(interactive=True, value=1)
# gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True),
# gr.update(interactive=True))
# # query_count = tracks.shape[0]
# query_count = tracks.shape[0]
# cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
# query_points_color = [[]]
# for i in range(query_count):
# # Choose the color for the point from matplotlib colormap
# color = cmap(i / float(query_count))
# color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
# query_points_color[0].append(color)
# # make color array
# colors = []
# for frame_colors in query_points_color:
# colors.extend(frame_colors)
# colors = np.array(colors)
# # visibs_ = visibs * 1.0
# # visibs_ = visibs_[:,1:] * visibs_[:,:-1]
# # inds = np.sum(visibs_, axis=1) >= min(T//4,8)
# # tracks = tracks[inds]
# # visibs = visibs[inds]
# # colors = colors[inds]
# # painted_video = paint_point_track_parallel(video_preview,tracks,visibs,colors)
# # painted_video = paint_point_track_gpu(video_preview,tracks,visibs,colors)
# painted_video = paint_point_track_gpu_scatter(video_preview,tracks,visibs,colors)
# print("7 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
# # save video
# video_file_name = uuid.uuid4().hex + ".mp4"
# video_path = os.path.join(os.path.dirname(__file__), "tmp")
# video_file_path = os.path.join(video_path, video_file_name)
# os.makedirs(video_path, exist_ok=True)
# if False:
# mediapy.write_video(video_file_path, painted_video, fps=video_fps)
# else:
# for ti in range(T):
# temp_out_f = '%s/%03d.jpg' % (video_path, ti)
# # temp_out_f = '%s/%03d.png' % (video_path, ti)
# im = PIL.Image.fromarray(painted_video[ti])
# # im.save(temp_out_f, "PNG", subsampling=0, quality=80)
# im.save(temp_out_f)
# print('saved', temp_out_f)
# # os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.png" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
# os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.jpg" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
# print('saved', video_file_path)
# for ti in range(T):
# # temp_out_f = '%s/%03d.png' % (video_path, ti)
# temp_out_f = '%s/%03d.jpg' % (video_path, ti)
# os.remove(temp_out_f)
# print('deleted', temp_out_f)
# # out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
# # subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {painted_video} -c:v libx264 {out_file.name}".split())
# return video_file_path
with gr.Blocks() as demo:
video = gr.State()
video_queried_preview = gr.State()
video_preview = gr.State()
video_input = gr.State()
video_fps = gr.State(24)
query_points = gr.State([])
query_points_color = gr.State([])
is_tracked_query = gr.State([])
query_count = gr.State(0)
# rate = gr.State([])
tracks = gr.State([])
visibs = gr.State([])
gr.Markdown("# ⚡ AllTracker: Efficient Dense Point Tracking at High Resolution")
gr.Markdown("<div style='text-align: left;'> \
<p>Welcome to <a href='https://alltracker.github.io/' target='_blank'>AllTracker</a>! This demo runs our model to perform all-pixel tracking in a video of your choice.</p> \
<p>To get started, simply upload your <b>.mp4</b> video, or click on one of the example videos. The shorter the video, the faster the processing. We recommend submitting videos under 20 seconds long.</p> \
<p>After picking a video, click \"Submit\" to load the frames into the app, and optionally choose a frame (using the slider), and then click \"Track\".</p> \
<p>For full info on how this works, check out our <a href='https://github.com/aharley/alltracker/' target='_blank'>GitHub Repo</a>!</p> \
<p>Initial code for this Gradio app came from LocoTrack and CoTracker -- big thanks to those authors!</p> \
</div>"
)
gr.Markdown("## Step 1: Select a video, and click \"Submit\".")
with gr.Row():
with gr.Column():
with gr.Row():
video_in = gr.Video(label="Video input", format="mp4")
with gr.Row():
submit = gr.Button("Submit")
with gr.Column():
# with gr.Accordion("Sample videos", open=True) as video_in_drawer:
with gr.Row():
butterfly = os.path.join(os.path.dirname(__file__), "videos", "butterfly_800.mp4")
monkey = os.path.join(os.path.dirname(__file__), "videos", "monkey_800.mp4")
groundbox = os.path.join(os.path.dirname(__file__), "videos", "groundbox_800.mp4")
apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
grasp_sponge_800 = os.path.join(os.path.dirname(__file__), "videos", "grasp_sponge_800.mp4")
twist = os.path.join(os.path.dirname(__file__), "videos", "twist_800.mp4")
# dog = os.path.join(os.path.dirname(__file__), "videos", "dog.mp4")
bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
paragliding_launch = os.path.join(os.path.dirname(__file__), "videos", "paragliding-launch.mp4")
paragliding = os.path.join(os.path.dirname(__file__), "videos", "paragliding.mp4")
cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4")
pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4")
teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4")
backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4")
gr.Examples(examples=[butterfly, groundbox, monkey, grasp_sponge_800, bear, apple, paragliding, paragliding_launch, cat, pillow, teddy, backpack, twist],
inputs = [
video_in
],
examples_per_page=20,
)
# with gr.Column():
# gr.Markdown("Choose a video or upload one of your own.")
gr.Markdown("## Step 2: Select a frame, and click \"Track\".")
with gr.Row():
with gr.Column():
with gr.Row():
query_frame_slider = gr.Slider(
minimum=0, maximum=100, value=0, step=1, label="Choose frame", interactive=False)
# with gr.Row():
# undo = gr.Button("Undo", interactive=False)
# clear_frame = gr.Button("Clear Frame", interactive=False)
# clear_all = gr.Button("Clear All", interactive=False)
with gr.Row():
current_frame = gr.Image(
# label="Click to add query points",
label="Query frame",
type="numpy",
interactive=False
)
with gr.Row():
track_button = gr.Button("Track", interactive=False)
with gr.Column():
# with gr.Row():
# rate1_button = gr.Button("Subsampling", interactive=False)
# rate2_button = gr.Button("Stride 2", interactive=False)
# rate4_button = gr.Button("Rate 4", interactive=False)
# rate8_button = gr.Button("Rate 8", interactive=False)
# # rate16_button = gr.Button("Rate 16", interactive=False)
with gr.Row():
# rate_slider = gr.Slider(
# minimum=1, maximum=16, value=1, step=1, label="Choose subsampling rate", interactive=False)
rate_radio = gr.Radio([1, 2, 4, 8, 16], value=1, label="Choose visualization subsampling", interactive=False)
with gr.Row():
output_video = gr.Video(
label="Output video",
interactive=False,
autoplay=True,
loop=True,
)
submit.click(
fn = preprocess_video_input,
inputs = [video_in],
outputs = [
video,
video_preview,
video_queried_preview,
video_input,
video_fps,
# video_in_drawer,
current_frame,
query_frame_slider,
query_points,
query_points_color,
is_tracked_query,
query_count,
# undo,
# clear_frame,
# clear_all,
track_button,
],
queue = False
)
query_frame_slider.change(
fn = choose_frame,
inputs = [query_frame_slider, video_queried_preview],
outputs = [
current_frame,
],
queue = False
)
# current_frame.select(
# fn = get_point,
# inputs = [
# query_frames,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count,
# ],
# outputs = [
# current_frame,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# queue = False
# )
# undo.click(
# fn = undo_point,
# inputs = [
# query_frames,
# video_preview,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# outputs = [
# current_frame,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# queue = False
# )
# clear_frame.click(
# fn = clear_frame_fn,
# inputs = [
# query_frames,
# video_preview,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# outputs = [
# current_frame,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# queue = False
# )
# clear_all.click(
# fn = clear_all_fn,
# inputs = [
# query_frames,
# video_preview,
# ],
# outputs = [
# current_frame,
# video_queried_preview,
# query_points,
# query_points_color,
# query_count
# ],
# queue = False
# )
# output_video = None
track_button.click(
fn = track,
inputs = [
video_preview,
video_input,
video_fps,
query_frame_slider,
query_points,
query_points_color,
query_count,
],
outputs = [
output_video,
tracks,
visibs,
rate_radio,
# rate1_button,
# rate2_button,
# rate4_button,
# rate8_button,
# rate16_button,
],
queue = True,
)
# rate_slider.change(
# fn = choose_rate,
# inputs = [rate_slider, video_preview, video_fps, tracks, visibs],
# outputs = [
# output_video,
# ],
# queue = False
# )
rate_radio.change(
fn = choose_rate,
inputs = [rate_radio, video_preview, video_fps, tracks, visibs],
outputs = [
output_video,
],
queue = False
)
# rate1_button.click(
# fn = choose_rate1,
# inputs = [video_preview, video_fps, tracks, visibs],
# outputs = [output_video],
# queue = False,
# )
# rate2_button.click(
# fn = choose_rate2,
# inputs = [video_preview, video_fps, tracks, visibs],
# outputs = [output_video],
# queue = False,
# )
# rate4_button.click(
# fn = choose_rate4,
# inputs = [video_preview, video_fps, tracks, visibs],
# outputs = [output_video],
# queue = False,
# )
# rate8_button.click(
# fn = choose_rate8,
# inputs = [video_preview, video_fps, tracks, visibs],
# outputs = [output_video],
# queue = False,
# )
# rate16_button.click(
# fn = choose_rate16,
# inputs = [video_preview, video_fps, tracks, visibs],
# outputs = [output_video],
# queue = False,
# )
# demo.launch(show_api=False, show_error=True, debug=False, share=False)
# demo.launch(show_api=False, show_error=True, debug=False, share=True)
demo.launch(show_api=False, show_error=True, debug=False, share=False)