Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import os | |
EPS = 1e-6 | |
def sub2ind(height, width, y, x): | |
return y*width + x | |
def ind2sub(height, width, ind): | |
y = ind // width | |
x = ind % width | |
return y, x | |
def get_lr_str(lr): | |
lrn = "%.1e" % lr # e.g., 5.0e-04 | |
lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4 | |
return lrn | |
def strnum(x): | |
s = '%g' % x | |
if '.' in s: | |
if x < 1.0: | |
s = s[s.index('.'):] | |
s = s[:min(len(s),4)] | |
return s | |
def assert_same_shape(t1, t2): | |
for (x, y) in zip(list(t1.shape), list(t2.shape)): | |
assert(x==y) | |
def mkdir(path): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
def print_stats(name, tensor): | |
shape = tensor.shape | |
tensor = tensor.detach().cpu().numpy() | |
print('%s (%s) min = %.2f, mean = %.2f, max = %.2f' % (name, tensor.dtype, np.min(tensor), np.mean(tensor), np.max(tensor)), shape) | |
def normalize_single(d): | |
# d is a whatever shape torch tensor | |
dmin = torch.min(d) | |
dmax = torch.max(d) | |
d = (d-dmin)/(EPS+(dmax-dmin)) | |
return d | |
def normalize(d): | |
# d is B x whatever. normalize within each element of the batch | |
out = torch.zeros(d.size(), dtype=d.dtype, device=d.device) | |
B = list(d.size())[0] | |
for b in list(range(B)): | |
out[b] = normalize_single(d[b]) | |
return out | |
def meshgrid2d(B, Y, X, stack=False, norm=False, device='cuda', on_chans=False): | |
# returns a meshgrid sized B x Y x X | |
grid_y = torch.linspace(0.0, Y-1, Y, device=torch.device(device)) | |
grid_y = torch.reshape(grid_y, [1, Y, 1]) | |
grid_y = grid_y.repeat(B, 1, X) | |
grid_x = torch.linspace(0.0, X-1, X, device=torch.device(device)) | |
grid_x = torch.reshape(grid_x, [1, 1, X]) | |
grid_x = grid_x.repeat(B, Y, 1) | |
if norm: | |
grid_y, grid_x = normalize_grid2d( | |
grid_y, grid_x, Y, X) | |
if stack: | |
# note we stack in xy order | |
# (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample) | |
if on_chans: | |
grid = torch.stack([grid_x, grid_y], dim=1) | |
else: | |
grid = torch.stack([grid_x, grid_y], dim=-1) | |
return grid | |
else: | |
return grid_y, grid_x | |
def gridcloud2d(B, Y, X, norm=False, device='cuda'): | |
# we want to sample for each location in the grid | |
grid_y, grid_x = meshgrid2d(B, Y, X, norm=norm, device=device) | |
x = torch.reshape(grid_x, [B, -1]) | |
y = torch.reshape(grid_y, [B, -1]) | |
# these are B x N | |
xy = torch.stack([x, y], dim=2) | |
# this is B x N x 2 | |
return xy | |
def reduce_masked_mean(x, mask, dim=None, keepdim=False, broadcast=False): | |
# x and mask are the same shape, or at least broadcastably so < actually it's safer if you disallow broadcasting | |
# returns shape-1 | |
# axis can be a list of axes | |
if not broadcast: | |
for (a,b) in zip(x.size(), mask.size()): | |
if not a==b: | |
print('some shape mismatch:', x.shape, mask.shape) | |
assert(a==b) # some shape mismatch! | |
# assert(x.size() == mask.size()) | |
prod = x*mask | |
if dim is None: | |
numer = torch.sum(prod) | |
denom = EPS+torch.sum(mask) | |
else: | |
numer = torch.sum(prod, dim=dim, keepdim=keepdim) | |
denom = EPS+torch.sum(mask, dim=dim, keepdim=keepdim) | |
mean = numer/denom | |
return mean | |
def reduce_masked_median(x, mask, keep_batch=False): | |
# x and mask are the same shape | |
assert(x.size() == mask.size()) | |
device = x.device | |
B = list(x.shape)[0] | |
x = x.detach().cpu().numpy() | |
mask = mask.detach().cpu().numpy() | |
if keep_batch: | |
x = np.reshape(x, [B, -1]) | |
mask = np.reshape(mask, [B, -1]) | |
meds = np.zeros([B], np.float32) | |
for b in list(range(B)): | |
xb = x[b] | |
mb = mask[b] | |
if np.sum(mb) > 0: | |
xb = xb[mb > 0] | |
meds[b] = np.median(xb) | |
else: | |
meds[b] = np.nan | |
meds = torch.from_numpy(meds).to(device) | |
return meds.float() | |
else: | |
x = np.reshape(x, [-1]) | |
mask = np.reshape(mask, [-1]) | |
if np.sum(mask) > 0: | |
x = x[mask > 0] | |
med = np.median(x) | |
else: | |
med = np.nan | |
med = np.array([med], np.float32) | |
med = torch.from_numpy(med).to(device) | |
return med.float() | |