Spaces:
Running
on
Zero
Running
on
Zero
updated comments
Browse files- README.md +20 -8
- app.py +321 -260
- nets/alltracker.py +11 -11
- requirements.txt +17 -0
README.md
CHANGED
@@ -1,14 +1,26 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
|
|
|
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
11 |
-
short_description: Efficient dense tracking
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: AllTracker
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.34.2
|
8 |
+
suggested_hardware: a100-large
|
9 |
+
suggested_storage: large
|
10 |
app_file: app.py
|
11 |
+
pinned: true
|
12 |
+
license: cc-by-nc-4.0
|
|
|
13 |
---
|
14 |
|
15 |
+
This is a demo for ["AllTracker: Efficient Dense Point Tracking at High Resolution"](https://alltracker.github.io/)
|
16 |
+
|
17 |
+
Paper page: https://huggingface.co/papers/2506.07310
|
18 |
+
|
19 |
+
```
|
20 |
+
@inproceedings{harley2025alltracker,
|
21 |
+
author = {Adam W. Harley and Yang You and Xinglong Sun and Yang Zheng and Nikhil Raghuraman and Yunqi Gu and Sheldon Liang and Wen-Hsuan Chu and Achal Dave and Pavel Tokmakov and Suya You and Rares Ambrus and Katerina Fragkiadaki and Leonidas J. Guibas},
|
22 |
+
title = {All{T}racker: {E}fficient Dense Point Tracking at High Resolution}
|
23 |
+
booktitle = {ICCV},
|
24 |
+
year = {2025}
|
25 |
+
}
|
26 |
+
```
|
app.py
CHANGED
@@ -5,7 +5,9 @@ import os
|
|
5 |
import sys
|
6 |
import uuid
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
8 |
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import mediapy
|
@@ -21,6 +23,7 @@ import numpy as np
|
|
21 |
import utils.basic
|
22 |
import utils.improc
|
23 |
|
|
|
24 |
|
25 |
# Generate random colormaps for visualizing different points.
|
26 |
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
|
@@ -37,63 +40,63 @@ def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
|
|
37 |
random.shuffle(colors)
|
38 |
return colors
|
39 |
|
40 |
-
def get_points_on_a_grid(
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
def paint_point_track_gpu_scatter(
|
99 |
frames: np.ndarray,
|
@@ -382,105 +385,105 @@ def paint_point_track(
|
|
382 |
return video
|
383 |
|
384 |
|
385 |
-
PREVIEW_WIDTH =
|
386 |
-
PREVIEW_HEIGHT =
|
387 |
# VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
|
388 |
POINT_SIZE = 1 # Size of the query point in the preview video
|
389 |
-
FRAME_LIMIT =
|
390 |
|
391 |
|
392 |
-
def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
|
393 |
-
|
394 |
|
395 |
-
|
396 |
|
397 |
-
|
398 |
-
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
|
410 |
-
|
411 |
-
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
|
423 |
|
424 |
-
def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
|
444 |
-
|
445 |
-
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
|
457 |
|
458 |
-
def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
459 |
-
|
460 |
|
461 |
-
|
462 |
-
|
463 |
|
464 |
-
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
|
474 |
|
475 |
|
476 |
-
def clear_all_fn(frame_num, video_preview):
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
|
485 |
|
486 |
def choose_frame(frame_num, video_preview_array):
|
@@ -502,6 +505,11 @@ def preprocess_video_input(video_path):
|
|
502 |
new_height, new_width = PREVIEW_HEIGHT, int(PREVIEW_WIDTH * width / height)
|
503 |
else:
|
504 |
new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH
|
|
|
|
|
|
|
|
|
|
|
505 |
preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
|
506 |
# input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)
|
507 |
# input_video = video_arr
|
@@ -519,7 +527,7 @@ def preprocess_video_input(video_path):
|
|
519 |
input_video, # Resized video input for model
|
520 |
# None, # video_feature, # Extracted feature
|
521 |
video_fps, # Set the video FPS
|
522 |
-
gr.update(open=
|
523 |
# tracking_mode, # Set the tracking mode
|
524 |
preview_video[0], # Set the preview frame to the first frame
|
525 |
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), # Set slider interactive
|
@@ -624,20 +632,47 @@ def track(
|
|
624 |
torch.cuda.empty_cache()
|
625 |
|
626 |
with torch.no_grad():
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
|
|
|
|
|
|
633 |
if query_frame > 0:
|
634 |
backward_flows_e, backward_visconf_maps_e, _, _ = \
|
635 |
-
model
|
636 |
-
backward_traj_maps_e = backward_flows_e + grid_xy # B,Tb,2,H,W, reversed
|
637 |
-
|
638 |
-
|
|
|
|
|
|
|
|
|
639 |
traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
|
640 |
visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
print("6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
642 |
|
643 |
# for ind in range(0, video_input.shape[1] - model.step, model.step):
|
@@ -665,7 +700,8 @@ def track(
|
|
665 |
visibs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
|
666 |
confs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
|
667 |
|
668 |
-
visibs = (visibs * confs) > 0.
|
|
|
669 |
|
670 |
|
671 |
# sc = (np.array([video_preview.shape[2], video_preview.shape[1]]) / np.array([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]])).reshape(1,1,2)
|
@@ -700,9 +736,31 @@ def track(
|
|
700 |
video_file_name = uuid.uuid4().hex + ".mp4"
|
701 |
video_path = os.path.join(os.path.dirname(__file__), "tmp")
|
702 |
video_file_path = os.path.join(video_path, video_file_name)
|
703 |
-
os.makedirs(video_path, exist_ok=True)
|
704 |
|
705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
|
707 |
return video_file_path
|
708 |
|
@@ -719,55 +777,58 @@ with gr.Blocks() as demo:
|
|
719 |
is_tracked_query = gr.State([])
|
720 |
query_count = gr.State(0)
|
721 |
|
722 |
-
gr.Markdown("#
|
723 |
gr.Markdown("<div style='text-align: left;'> \
|
724 |
-
<p>Welcome to <a href='https://
|
725 |
-
The model tracks
|
726 |
-
<p>
|
727 |
-
<p>
|
728 |
-
<p
|
|
|
729 |
</div>"
|
730 |
)
|
731 |
|
732 |
|
733 |
-
gr.Markdown("##
|
734 |
with gr.Row():
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
os.path.dirname(__file__), "videos", "
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
|
|
|
|
760 |
|
761 |
-
gr.Markdown("##
|
762 |
with gr.Row():
|
763 |
with gr.Column():
|
764 |
with gr.Row():
|
765 |
query_frames = gr.Slider(
|
766 |
minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False)
|
767 |
-
with gr.Row():
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
|
772 |
with gr.Row():
|
773 |
current_frame = gr.Image(
|
@@ -799,16 +860,16 @@ with gr.Blocks() as demo:
|
|
799 |
video_queried_preview,
|
800 |
video_input,
|
801 |
video_fps,
|
802 |
-
video_in_drawer,
|
803 |
current_frame,
|
804 |
query_frames,
|
805 |
query_points,
|
806 |
query_points_color,
|
807 |
is_tracked_query,
|
808 |
query_count,
|
809 |
-
undo,
|
810 |
-
clear_frame,
|
811 |
-
clear_all,
|
812 |
track_button,
|
813 |
],
|
814 |
queue = False
|
@@ -823,80 +884,80 @@ with gr.Blocks() as demo:
|
|
823 |
queue = False
|
824 |
)
|
825 |
|
826 |
-
current_frame.select(
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
)
|
844 |
|
845 |
-
undo.click(
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
)
|
864 |
-
|
865 |
-
clear_frame.click(
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
)
|
884 |
-
|
885 |
-
clear_all.click(
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
)
|
900 |
|
901 |
|
902 |
track_button.click(
|
|
|
5 |
import sys
|
6 |
import uuid
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
import subprocess
|
9 |
|
10 |
+
from nets.blocks import InputPadder
|
11 |
|
12 |
import gradio as gr
|
13 |
import mediapy
|
|
|
23 |
import utils.basic
|
24 |
import utils.improc
|
25 |
|
26 |
+
import PIL.Image
|
27 |
|
28 |
# Generate random colormaps for visualizing different points.
|
29 |
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
|
|
|
40 |
random.shuffle(colors)
|
41 |
return colors
|
42 |
|
43 |
+
# def get_points_on_a_grid(
|
44 |
+
# size: int,
|
45 |
+
# extent: Tuple[float, ...],
|
46 |
+
# center: Optional[Tuple[float, ...]] = None,
|
47 |
+
# device: Optional[torch.device] = torch.device("cpu"),
|
48 |
+
# ):
|
49 |
+
# r"""Get a grid of points covering a rectangular region
|
50 |
+
|
51 |
+
# `get_points_on_a_grid(size, extent)` generates a :attr:`size` by
|
52 |
+
# :attr:`size` grid fo points distributed to cover a rectangular area
|
53 |
+
# specified by `extent`.
|
54 |
+
|
55 |
+
# The `extent` is a pair of integer :math:`(H,W)` specifying the height
|
56 |
+
# and width of the rectangle.
|
57 |
+
|
58 |
+
# Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
|
59 |
+
# specifying the vertical and horizontal center coordinates. The center
|
60 |
+
# defaults to the middle of the extent.
|
61 |
+
|
62 |
+
# Points are distributed uniformly within the rectangle leaving a margin
|
63 |
+
# :math:`m=W/64` from the border.
|
64 |
+
|
65 |
+
# It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
|
66 |
+
# points :math:`P_{ij}=(x_i, y_i)` where
|
67 |
+
|
68 |
+
# .. math::
|
69 |
+
# P_{ij} = \left(
|
70 |
+
# c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
|
71 |
+
# c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
|
72 |
+
# \right)
|
73 |
+
|
74 |
+
# Points are returned in row-major order.
|
75 |
+
|
76 |
+
# Args:
|
77 |
+
# size (int): grid size.
|
78 |
+
# extent (tuple): height and with of the grid extent.
|
79 |
+
# center (tuple, optional): grid center.
|
80 |
+
# device (str, optional): Defaults to `"cpu"`.
|
81 |
+
|
82 |
+
# Returns:
|
83 |
+
# Tensor: grid.
|
84 |
+
# """
|
85 |
+
# if size == 1:
|
86 |
+
# return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]
|
87 |
+
|
88 |
+
# if center is None:
|
89 |
+
# center = [extent[0] / 2, extent[1] / 2]
|
90 |
+
|
91 |
+
# margin = extent[1] / 64
|
92 |
+
# range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
|
93 |
+
# range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
|
94 |
+
# grid_y, grid_x = torch.meshgrid(
|
95 |
+
# torch.linspace(*range_y, size, device=device),
|
96 |
+
# torch.linspace(*range_x, size, device=device),
|
97 |
+
# indexing="ij",
|
98 |
+
# )
|
99 |
+
# return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)
|
100 |
|
101 |
def paint_point_track_gpu_scatter(
|
102 |
frames: np.ndarray,
|
|
|
385 |
return video
|
386 |
|
387 |
|
388 |
+
PREVIEW_WIDTH = 1024 # Width of the preview video
|
389 |
+
PREVIEW_HEIGHT = 1024
|
390 |
# VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
|
391 |
POINT_SIZE = 1 # Size of the query point in the preview video
|
392 |
+
FRAME_LIMIT = 600 # Limit the number of frames to process
|
393 |
|
394 |
|
395 |
+
# def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
|
396 |
+
# print(f"You selected {(evt.index[0], evt.index[1], frame_num)}")
|
397 |
|
398 |
+
# current_frame = video_queried_preview[int(frame_num)]
|
399 |
|
400 |
+
# # Get the mouse click
|
401 |
+
# query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))
|
402 |
|
403 |
+
# # Choose the color for the point from matplotlib colormap
|
404 |
+
# color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
|
405 |
+
# color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
406 |
+
# # print(f"Color: {color}")
|
407 |
+
# query_points_color[int(frame_num)].append(color)
|
408 |
|
409 |
+
# # Draw the point on the frame
|
410 |
+
# x, y = evt.index
|
411 |
+
# current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)
|
412 |
|
413 |
+
# # Update the frame
|
414 |
+
# video_queried_preview[int(frame_num)] = current_frame_draw
|
415 |
|
416 |
+
# # Update the query count
|
417 |
+
# query_count += 1
|
418 |
+
# return (
|
419 |
+
# current_frame_draw, # Updated frame for preview
|
420 |
+
# video_queried_preview, # Updated preview video
|
421 |
+
# query_points, # Updated query points
|
422 |
+
# query_points_color, # Updated query points color
|
423 |
+
# query_count # Updated query count
|
424 |
+
# )
|
425 |
|
426 |
|
427 |
+
# def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
428 |
+
# if len(query_points[int(frame_num)]) == 0:
|
429 |
+
# return (
|
430 |
+
# video_queried_preview[int(frame_num)],
|
431 |
+
# video_queried_preview,
|
432 |
+
# query_points,
|
433 |
+
# query_points_color,
|
434 |
+
# query_count
|
435 |
+
# )
|
436 |
|
437 |
+
# # Get the last point
|
438 |
+
# query_points[int(frame_num)].pop(-1)
|
439 |
+
# query_points_color[int(frame_num)].pop(-1)
|
440 |
|
441 |
+
# # Redraw the frame
|
442 |
+
# current_frame_draw = video_preview[int(frame_num)].copy()
|
443 |
+
# for point, color in zip(query_points[int(frame_num)], query_points_color[int(frame_num)]):
|
444 |
+
# x, y, _ = point
|
445 |
+
# current_frame_draw = cv2.circle(current_frame_draw, (x, y), POINT_SIZE, color, -1)
|
446 |
|
447 |
+
# # Update the query count
|
448 |
+
# query_count -= 1
|
449 |
|
450 |
+
# # Update the frame
|
451 |
+
# video_queried_preview[int(frame_num)] = current_frame_draw
|
452 |
+
# return (
|
453 |
+
# current_frame_draw, # Updated frame for preview
|
454 |
+
# video_queried_preview, # Updated preview video
|
455 |
+
# query_points, # Updated query points
|
456 |
+
# query_points_color, # Updated query points color
|
457 |
+
# query_count # Updated query count
|
458 |
+
# )
|
459 |
|
460 |
|
461 |
+
# def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
462 |
+
# query_count -= len(query_points[int(frame_num)])
|
463 |
|
464 |
+
# query_points[int(frame_num)] = []
|
465 |
+
# query_points_color[int(frame_num)] = []
|
466 |
|
467 |
+
# video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()
|
468 |
|
469 |
+
# return (
|
470 |
+
# video_preview[int(frame_num)], # Set the preview frame to the original frame
|
471 |
+
# video_queried_preview,
|
472 |
+
# query_points, # Cleared query points
|
473 |
+
# query_points_color, # Cleared query points color
|
474 |
+
# query_count # New query count
|
475 |
+
# )
|
476 |
|
477 |
|
478 |
|
479 |
+
# def clear_all_fn(frame_num, video_preview):
|
480 |
+
# return (
|
481 |
+
# video_preview[int(frame_num)],
|
482 |
+
# video_preview.copy(),
|
483 |
+
# [[] for _ in range(len(video_preview))],
|
484 |
+
# [[] for _ in range(len(video_preview))],
|
485 |
+
# 0
|
486 |
+
# )
|
487 |
|
488 |
|
489 |
def choose_frame(frame_num, video_preview_array):
|
|
|
505 |
new_height, new_width = PREVIEW_HEIGHT, int(PREVIEW_WIDTH * width / height)
|
506 |
else:
|
507 |
new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH
|
508 |
+
if height*width > 768*768:
|
509 |
+
new_height = new_height*3//4
|
510 |
+
new_width = new_width*3//4
|
511 |
+
|
512 |
+
|
513 |
preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
|
514 |
# input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)
|
515 |
# input_video = video_arr
|
|
|
527 |
input_video, # Resized video input for model
|
528 |
# None, # video_feature, # Extracted feature
|
529 |
video_fps, # Set the video FPS
|
530 |
+
# gr.update(open=True), # open/close the video input drawer
|
531 |
# tracking_mode, # Set the tracking mode
|
532 |
preview_video[0], # Set the preview frame to the first frame
|
533 |
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), # Set slider interactive
|
|
|
632 |
torch.cuda.empty_cache()
|
633 |
|
634 |
with torch.no_grad():
|
635 |
+
utils.basic.print_stats('video_input', video_input)
|
636 |
+
if query_frame < T-1:
|
637 |
+
flows_e, visconf_maps_e, _, _ = \
|
638 |
+
model(video_input[:, query_frame:], iters=4, sw=None, is_training=False)
|
639 |
+
traj_maps_e = flows_e.cpu() + grid_xy # B,Tf,2,H,W
|
640 |
+
visconf_maps_e = visconf_maps_e.cpu()
|
641 |
+
else:
|
642 |
+
traj_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
|
643 |
+
visconf_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
|
644 |
if query_frame > 0:
|
645 |
backward_flows_e, backward_visconf_maps_e, _, _ = \
|
646 |
+
model(video_input[:, :query_frame+1].flip([1]), iters=4, sw=None, is_training=False)
|
647 |
+
backward_traj_maps_e = backward_flows_e.cpu() + grid_xy # B,Tb,2,H,W, reversed
|
648 |
+
backward_visconf_maps_e = backward_visconf_maps_e.cpu()
|
649 |
+
backward_traj_maps_e = backward_traj_maps_e.flip([1]) # flip time
|
650 |
+
backward_visconf_maps_e = backward_visconf_maps_e.flip([1]) # flip time
|
651 |
+
if query_frame < T-1:
|
652 |
+
backward_traj_maps_e = backward_traj_maps_e[:, :-1] # drop the overlapped frame
|
653 |
+
backward_visconf_maps_e = backward_visconf_maps_e[:, :-1] # drop the overlapped frame
|
654 |
traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
|
655 |
visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
|
656 |
+
# if query_frame < T-1:
|
657 |
+
# flows_e, visconf_maps_e, _, _ = \
|
658 |
+
# model.forward_sliding(video_input[:, query_frame:], iters=4, sw=None, is_training=False)
|
659 |
+
# traj_maps_e = flows_e + grid_xy # B,Tf,2,H,W
|
660 |
+
# print("5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
661 |
+
# else:
|
662 |
+
# traj_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
|
663 |
+
# visconf_maps_e = torch.zeros((1,0,2,H,W), dtype=torch.float32)
|
664 |
+
|
665 |
+
# if query_frame > 0:
|
666 |
+
# backward_flows_e, backward_visconf_maps_e, _, _ = \
|
667 |
+
# model.forward_sliding(video_input[:, :query_frame+1].flip([1]), iters=4, sw=None, is_training=False)
|
668 |
+
# backward_traj_maps_e = backward_flows_e + grid_xy # B,Tb,2,H,W, reversed
|
669 |
+
# backward_traj_maps_e = backward_traj_maps_e.flip([1]) # flip time
|
670 |
+
# backward_visconf_maps_e = backward_visconf_maps_e.flip([1]) # flip time
|
671 |
+
# if query_frame < T-1:
|
672 |
+
# backward_traj_maps_e = backward_traj_maps_e[:, :-1] # drop the overlapped frame
|
673 |
+
# backward_visconf_maps_e = backward_visconf_maps_e[:, :-1] # drop the overlapped frame
|
674 |
+
# traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
|
675 |
+
# visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
|
676 |
print("6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
677 |
|
678 |
# for ind in range(0, video_input.shape[1] - model.step, model.step):
|
|
|
700 |
visibs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
|
701 |
confs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy()
|
702 |
|
703 |
+
visibs = (visibs * confs) > 0.2 # N,T
|
704 |
+
# visibs = (confs) > 0.1 # N,T
|
705 |
|
706 |
|
707 |
# sc = (np.array([video_preview.shape[2], video_preview.shape[1]]) / np.array([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]])).reshape(1,1,2)
|
|
|
736 |
video_file_name = uuid.uuid4().hex + ".mp4"
|
737 |
video_path = os.path.join(os.path.dirname(__file__), "tmp")
|
738 |
video_file_path = os.path.join(video_path, video_file_name)
|
|
|
739 |
|
740 |
+
os.makedirs(video_path, exist_ok=True)
|
741 |
+
if False:
|
742 |
+
mediapy.write_video(video_file_path, painted_video, fps=video_fps)
|
743 |
+
else:
|
744 |
+
for ti in range(T):
|
745 |
+
temp_out_f = '%s/%03d.jpg' % (video_path, ti)
|
746 |
+
# temp_out_f = '%s/%03d.png' % (video_path, ti)
|
747 |
+
im = PIL.Image.fromarray(painted_video[ti])
|
748 |
+
# im.save(temp_out_f, "PNG", subsampling=0, quality=80)
|
749 |
+
im.save(temp_out_f)
|
750 |
+
print('saved', temp_out_f)
|
751 |
+
# os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.png" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
|
752 |
+
os.system('/usr/bin/ffmpeg -y -hide_banner -loglevel error -f image2 -framerate %d -pattern_type glob -i "%s/*.jpg" -c:v libx264 -crf 20 -pix_fmt yuv420p %s' % (video_fps, video_path, video_file_path))
|
753 |
+
print('saved', video_file_path)
|
754 |
+
for ti in range(T):
|
755 |
+
# temp_out_f = '%s/%03d.png' % (video_path, ti)
|
756 |
+
temp_out_f = '%s/%03d.jpg' % (video_path, ti)
|
757 |
+
os.remove(temp_out_f)
|
758 |
+
print('deleted', temp_out_f)
|
759 |
+
|
760 |
+
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
761 |
+
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {painted_video} -c:v libx264 {out_file.name}".split())
|
762 |
+
|
763 |
+
|
764 |
|
765 |
return video_file_path
|
766 |
|
|
|
777 |
is_tracked_query = gr.State([])
|
778 |
query_count = gr.State(0)
|
779 |
|
780 |
+
gr.Markdown("# ⚡ AllTracker: Efficient Dense Point Tracking at High Resolution")
|
781 |
gr.Markdown("<div style='text-align: left;'> \
|
782 |
+
<p>Welcome to <a href='https://alltracker.github.io/' target='_blank'>AllTracker</a>! This space demonstrates point (pixel) tracking in videos. \
|
783 |
+
The model tracks all pixels in a frame that you select. </p> \
|
784 |
+
<p>To get started, simply upload your <b>.mp4</b> video, or click on one of the example videos. The shorter the video, the faster the processing. We recommend submitting videos under 20 seconds long.</p> \
|
785 |
+
<p>After picking a video, click \"Submit\" to load the frames into the app, and optionally choose a frame (using the slider), and then click \"Track\".</p> \
|
786 |
+
<p>For full info on how this works, check out our <a href='https://github.com/aharley/alltracker/' target='_blank'>GitHub Repo</a>!</p> \
|
787 |
+
<p>Initial code for this Gradio app came from LocoTrack and CoTracker.</p> \
|
788 |
</div>"
|
789 |
)
|
790 |
|
791 |
|
792 |
+
gr.Markdown("## Step 1: Select a video, and click \"Submit\".")
|
793 |
with gr.Row():
|
794 |
+
with gr.Column():
|
795 |
+
with gr.Row():
|
796 |
+
video_in = gr.Video(label="Video Input", format="mp4")
|
797 |
+
with gr.Row():
|
798 |
+
submit = gr.Button("Submit")
|
799 |
+
with gr.Column():
|
800 |
+
# with gr.Accordion("Sample videos", open=True) as video_in_drawer:
|
801 |
+
with gr.Row():
|
802 |
+
dog = os.path.join(os.path.dirname(__file__), "videos", "dog.mp4")
|
803 |
+
monkey = os.path.join(os.path.dirname(__file__), "videos", "monkey_28.mp4")
|
804 |
+
apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
|
805 |
+
bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
|
806 |
+
paragliding_launch = os.path.join(
|
807 |
+
os.path.dirname(__file__), "videos", "paragliding-launch.mp4"
|
808 |
+
)
|
809 |
+
paragliding = os.path.join(os.path.dirname(__file__), "videos", "paragliding.mp4")
|
810 |
+
cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4")
|
811 |
+
pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4")
|
812 |
+
teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4")
|
813 |
+
backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4")
|
814 |
+
gr.Examples(examples=[dog, monkey, bear, apple, paragliding, paragliding_launch, cat, pillow, teddy, backpack],
|
815 |
+
inputs = [
|
816 |
+
video_in
|
817 |
+
],
|
818 |
+
)
|
819 |
+
# with gr.Column():
|
820 |
+
# gr.Markdown("Choose a video or upload one of your own.")
|
821 |
|
822 |
+
gr.Markdown("## Step 2: Select a frame, and click \"Track\"")
|
823 |
with gr.Row():
|
824 |
with gr.Column():
|
825 |
with gr.Row():
|
826 |
query_frames = gr.Slider(
|
827 |
minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False)
|
828 |
+
# with gr.Row():
|
829 |
+
# undo = gr.Button("Undo", interactive=False)
|
830 |
+
# clear_frame = gr.Button("Clear Frame", interactive=False)
|
831 |
+
# clear_all = gr.Button("Clear All", interactive=False)
|
832 |
|
833 |
with gr.Row():
|
834 |
current_frame = gr.Image(
|
|
|
860 |
video_queried_preview,
|
861 |
video_input,
|
862 |
video_fps,
|
863 |
+
# video_in_drawer,
|
864 |
current_frame,
|
865 |
query_frames,
|
866 |
query_points,
|
867 |
query_points_color,
|
868 |
is_tracked_query,
|
869 |
query_count,
|
870 |
+
# undo,
|
871 |
+
# clear_frame,
|
872 |
+
# clear_all,
|
873 |
track_button,
|
874 |
],
|
875 |
queue = False
|
|
|
884 |
queue = False
|
885 |
)
|
886 |
|
887 |
+
# current_frame.select(
|
888 |
+
# fn = get_point,
|
889 |
+
# inputs = [
|
890 |
+
# query_frames,
|
891 |
+
# video_queried_preview,
|
892 |
+
# query_points,
|
893 |
+
# query_points_color,
|
894 |
+
# query_count,
|
895 |
+
# ],
|
896 |
+
# outputs = [
|
897 |
+
# current_frame,
|
898 |
+
# video_queried_preview,
|
899 |
+
# query_points,
|
900 |
+
# query_points_color,
|
901 |
+
# query_count
|
902 |
+
# ],
|
903 |
+
# queue = False
|
904 |
+
# )
|
905 |
|
906 |
+
# undo.click(
|
907 |
+
# fn = undo_point,
|
908 |
+
# inputs = [
|
909 |
+
# query_frames,
|
910 |
+
# video_preview,
|
911 |
+
# video_queried_preview,
|
912 |
+
# query_points,
|
913 |
+
# query_points_color,
|
914 |
+
# query_count
|
915 |
+
# ],
|
916 |
+
# outputs = [
|
917 |
+
# current_frame,
|
918 |
+
# video_queried_preview,
|
919 |
+
# query_points,
|
920 |
+
# query_points_color,
|
921 |
+
# query_count
|
922 |
+
# ],
|
923 |
+
# queue = False
|
924 |
+
# )
|
925 |
+
|
926 |
+
# clear_frame.click(
|
927 |
+
# fn = clear_frame_fn,
|
928 |
+
# inputs = [
|
929 |
+
# query_frames,
|
930 |
+
# video_preview,
|
931 |
+
# video_queried_preview,
|
932 |
+
# query_points,
|
933 |
+
# query_points_color,
|
934 |
+
# query_count
|
935 |
+
# ],
|
936 |
+
# outputs = [
|
937 |
+
# current_frame,
|
938 |
+
# video_queried_preview,
|
939 |
+
# query_points,
|
940 |
+
# query_points_color,
|
941 |
+
# query_count
|
942 |
+
# ],
|
943 |
+
# queue = False
|
944 |
+
# )
|
945 |
+
|
946 |
+
# clear_all.click(
|
947 |
+
# fn = clear_all_fn,
|
948 |
+
# inputs = [
|
949 |
+
# query_frames,
|
950 |
+
# video_preview,
|
951 |
+
# ],
|
952 |
+
# outputs = [
|
953 |
+
# current_frame,
|
954 |
+
# video_queried_preview,
|
955 |
+
# query_points,
|
956 |
+
# query_points_color,
|
957 |
+
# query_count
|
958 |
+
# ],
|
959 |
+
# queue = False
|
960 |
+
# )
|
961 |
|
962 |
|
963 |
track_button.click(
|
nets/alltracker.py
CHANGED
@@ -236,7 +236,7 @@ class Net(nn.Module):
|
|
236 |
std = torch.as_tensor([0.229, 0.224, 0.225], device=device).reshape(1,1,3,1,1).to(images.dtype)
|
237 |
images = images / 255.0
|
238 |
images = (images - mean)/std
|
239 |
-
print("a0 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
240 |
|
241 |
T_bak = T
|
242 |
if stride is not None:
|
@@ -250,7 +250,7 @@ class Net(nn.Module):
|
|
250 |
padder = InputPadder(images_.shape)
|
251 |
images_ = padder.pad(images_)[0]
|
252 |
|
253 |
-
print("a1 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
254 |
|
255 |
_, _, H_pad, W_pad = images_.shape # revised HW
|
256 |
C, H8, W8 = self.dim*2, H_pad//8, W_pad//8
|
@@ -261,7 +261,7 @@ class Net(nn.Module):
|
|
261 |
|
262 |
fmaps = self.get_fmaps(images_, B, T, sw, is_training).reshape(B,T,C,H8,W8)
|
263 |
device = fmaps.device
|
264 |
-
print("a2 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
265 |
|
266 |
fmap_anchor = fmaps[:,0]
|
267 |
|
@@ -285,11 +285,11 @@ class Net(nn.Module):
|
|
285 |
if self.use_feats8:
|
286 |
full_feats8 = torch.zeros((B,T,C2,H_pad//8,W_pad//8), dtype=dtype, device=device)
|
287 |
visits = np.zeros((T))
|
288 |
-
print("a3 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
289 |
|
290 |
for ii, ind in enumerate(indices):
|
291 |
ara = np.arange(ind,ind+S)
|
292 |
-
print('ara', ara)
|
293 |
if ii < len(indices)-1:
|
294 |
next_ind = indices[ii+1]
|
295 |
next_ara = np.arange(next_ind,next_ind+S)
|
@@ -306,12 +306,12 @@ class Net(nn.Module):
|
|
306 |
feats8 = full_feats8[:,ara].reshape(B*(S),C2,H_pad//8,W_pad//8).detach()
|
307 |
else:
|
308 |
feats8 = None
|
309 |
-
print("a4 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
310 |
|
311 |
flow_predictions, visconf_predictions, flows8, visconfs8, feats8 = self.forward_window(
|
312 |
fmap_anchor, fmaps2, visconfs8, iters=iters, flowfeat=feats8, flows8=flows8,
|
313 |
is_training=is_training)
|
314 |
-
print("a5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
315 |
|
316 |
unpad_flow_predictions = []
|
317 |
unpad_visconf_predictions = []
|
@@ -320,7 +320,7 @@ class Net(nn.Module):
|
|
320 |
unpad_flow_predictions.append(flow_predictions[i].reshape(B,S,2,H,W))
|
321 |
visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
|
322 |
unpad_visconf_predictions.append(visconf_predictions[i].reshape(B,S,2,H,W))
|
323 |
-
print("a6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
324 |
|
325 |
full_flows[:,ara] = unpad_flow_predictions[-1].reshape(B,S,2,H,W)
|
326 |
full_flows8[:,ara] = flows8.reshape(B,S,2,H_pad//8,W_pad//8)
|
@@ -329,7 +329,7 @@ class Net(nn.Module):
|
|
329 |
if self.use_feats8:
|
330 |
full_feats8[:,ara] = feats8.reshape(B,S,C2,H_pad//8,W_pad//8)
|
331 |
visits[ara] += 1
|
332 |
-
print("a7 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
333 |
|
334 |
if is_training:
|
335 |
all_flow_preds.append(unpad_flow_predictions)
|
@@ -348,7 +348,7 @@ class Net(nn.Module):
|
|
348 |
full_visconfs8[:,idx] = full_visconfs8[:,nearest]
|
349 |
if self.use_feats8:
|
350 |
full_feats8[:,idx] = full_feats8[:,nearest]
|
351 |
-
print("a8 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
352 |
else: # flow
|
353 |
|
354 |
flows8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
|
@@ -370,7 +370,7 @@ class Net(nn.Module):
|
|
370 |
if (not is_training) and (T > 2):
|
371 |
full_flows = full_flows[:,:T_bak]
|
372 |
full_visconfs = full_visconfs[:,:T_bak]
|
373 |
-
print("a9 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
374 |
|
375 |
return full_flows, full_visconfs, all_flow_preds, all_visconf_preds
|
376 |
|
|
|
236 |
std = torch.as_tensor([0.229, 0.224, 0.225], device=device).reshape(1,1,3,1,1).to(images.dtype)
|
237 |
images = images / 255.0
|
238 |
images = (images - mean)/std
|
239 |
+
# print("a0 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
240 |
|
241 |
T_bak = T
|
242 |
if stride is not None:
|
|
|
250 |
padder = InputPadder(images_.shape)
|
251 |
images_ = padder.pad(images_)[0]
|
252 |
|
253 |
+
# print("a1 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
254 |
|
255 |
_, _, H_pad, W_pad = images_.shape # revised HW
|
256 |
C, H8, W8 = self.dim*2, H_pad//8, W_pad//8
|
|
|
261 |
|
262 |
fmaps = self.get_fmaps(images_, B, T, sw, is_training).reshape(B,T,C,H8,W8)
|
263 |
device = fmaps.device
|
264 |
+
# print("a2 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
265 |
|
266 |
fmap_anchor = fmaps[:,0]
|
267 |
|
|
|
285 |
if self.use_feats8:
|
286 |
full_feats8 = torch.zeros((B,T,C2,H_pad//8,W_pad//8), dtype=dtype, device=device)
|
287 |
visits = np.zeros((T))
|
288 |
+
# print("a3 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
289 |
|
290 |
for ii, ind in enumerate(indices):
|
291 |
ara = np.arange(ind,ind+S)
|
292 |
+
# print('ara', ara)
|
293 |
if ii < len(indices)-1:
|
294 |
next_ind = indices[ii+1]
|
295 |
next_ara = np.arange(next_ind,next_ind+S)
|
|
|
306 |
feats8 = full_feats8[:,ara].reshape(B*(S),C2,H_pad//8,W_pad//8).detach()
|
307 |
else:
|
308 |
feats8 = None
|
309 |
+
# print("a4 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
310 |
|
311 |
flow_predictions, visconf_predictions, flows8, visconfs8, feats8 = self.forward_window(
|
312 |
fmap_anchor, fmaps2, visconfs8, iters=iters, flowfeat=feats8, flows8=flows8,
|
313 |
is_training=is_training)
|
314 |
+
# print("a5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
315 |
|
316 |
unpad_flow_predictions = []
|
317 |
unpad_visconf_predictions = []
|
|
|
320 |
unpad_flow_predictions.append(flow_predictions[i].reshape(B,S,2,H,W))
|
321 |
visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
|
322 |
unpad_visconf_predictions.append(visconf_predictions[i].reshape(B,S,2,H,W))
|
323 |
+
# print("a6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
324 |
|
325 |
full_flows[:,ara] = unpad_flow_predictions[-1].reshape(B,S,2,H,W)
|
326 |
full_flows8[:,ara] = flows8.reshape(B,S,2,H_pad//8,W_pad//8)
|
|
|
329 |
if self.use_feats8:
|
330 |
full_feats8[:,ara] = feats8.reshape(B,S,C2,H_pad//8,W_pad//8)
|
331 |
visits[ara] += 1
|
332 |
+
# print("a7 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
333 |
|
334 |
if is_training:
|
335 |
all_flow_preds.append(unpad_flow_predictions)
|
|
|
348 |
full_visconfs8[:,idx] = full_visconfs8[:,nearest]
|
349 |
if self.use_feats8:
|
350 |
full_feats8[:,idx] = full_feats8[:,nearest]
|
351 |
+
# print("a8 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
352 |
else: # flow
|
353 |
|
354 |
flows8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
|
|
|
370 |
if (not is_training) and (T > 2):
|
371 |
full_flows = full_flows[:,:T_bak]
|
372 |
full_visconfs = full_visconfs[:,:T_bak]
|
373 |
+
# print("a9 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
374 |
|
375 |
return full_flows, full_visconfs, all_flow_preds, all_visconf_preds
|
376 |
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
imageio==2.19.3
|
3 |
+
imageio-ffmpeg==0.4.7
|
4 |
+
tqdm
|
5 |
+
gradio
|
6 |
+
spaces
|
7 |
+
matplotlib
|
8 |
+
pillow
|
9 |
+
torch==2.2.0
|
10 |
+
torchvision==0.17.0
|
11 |
+
albumentations
|
12 |
+
pytorch-lightning==2.2.5
|
13 |
+
opencv-python
|
14 |
+
scikit-learn
|
15 |
+
scikit-image
|
16 |
+
einops
|
17 |
+
transformers
|