Spaces:
Running
on
Zero
Running
on
Zero
added app
Browse files
app.py
ADDED
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this is built from https://huggingface.co/spaces/facebook/cotracker/blob/main/app.py
|
2 |
+
# which was built from https://github.com/cvlab-kaist/locotrack/blob/main/demo/demo.py
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import uuid
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import mediapy
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
import matplotlib
|
13 |
+
import torch
|
14 |
+
import colorsys
|
15 |
+
import random
|
16 |
+
from typing import List, Optional, Sequence, Tuple
|
17 |
+
import spaces
|
18 |
+
import numpy as np
|
19 |
+
import utils.basic
|
20 |
+
import utils.improc
|
21 |
+
|
22 |
+
|
23 |
+
# Generate random colormaps for visualizing different points.
|
24 |
+
def get_colors(num_colors: int) -> List[Tuple[int, int, int]]:
|
25 |
+
"""Gets colormap for points."""
|
26 |
+
colors = []
|
27 |
+
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
|
28 |
+
hue = i / 360.0
|
29 |
+
lightness = (50 + np.random.rand() * 10) / 100.0
|
30 |
+
saturation = (90 + np.random.rand() * 10) / 100.0
|
31 |
+
color = colorsys.hls_to_rgb(hue, lightness, saturation)
|
32 |
+
colors.append(
|
33 |
+
(int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
34 |
+
)
|
35 |
+
random.shuffle(colors)
|
36 |
+
return colors
|
37 |
+
|
38 |
+
def get_points_on_a_grid(
|
39 |
+
size: int,
|
40 |
+
extent: Tuple[float, ...],
|
41 |
+
center: Optional[Tuple[float, ...]] = None,
|
42 |
+
device: Optional[torch.device] = torch.device("cpu"),
|
43 |
+
):
|
44 |
+
r"""Get a grid of points covering a rectangular region
|
45 |
+
|
46 |
+
`get_points_on_a_grid(size, extent)` generates a :attr:`size` by
|
47 |
+
:attr:`size` grid fo points distributed to cover a rectangular area
|
48 |
+
specified by `extent`.
|
49 |
+
|
50 |
+
The `extent` is a pair of integer :math:`(H,W)` specifying the height
|
51 |
+
and width of the rectangle.
|
52 |
+
|
53 |
+
Optionally, the :attr:`center` can be specified as a pair :math:`(c_y,c_x)`
|
54 |
+
specifying the vertical and horizontal center coordinates. The center
|
55 |
+
defaults to the middle of the extent.
|
56 |
+
|
57 |
+
Points are distributed uniformly within the rectangle leaving a margin
|
58 |
+
:math:`m=W/64` from the border.
|
59 |
+
|
60 |
+
It returns a :math:`(1, \text{size} \times \text{size}, 2)` tensor of
|
61 |
+
points :math:`P_{ij}=(x_i, y_i)` where
|
62 |
+
|
63 |
+
.. math::
|
64 |
+
P_{ij} = \left(
|
65 |
+
c_x + m -\frac{W}{2} + \frac{W - 2m}{\text{size} - 1}\, j,~
|
66 |
+
c_y + m -\frac{H}{2} + \frac{H - 2m}{\text{size} - 1}\, i
|
67 |
+
\right)
|
68 |
+
|
69 |
+
Points are returned in row-major order.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
size (int): grid size.
|
73 |
+
extent (tuple): height and with of the grid extent.
|
74 |
+
center (tuple, optional): grid center.
|
75 |
+
device (str, optional): Defaults to `"cpu"`.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
Tensor: grid.
|
79 |
+
"""
|
80 |
+
if size == 1:
|
81 |
+
return torch.tensor([extent[1] / 2, extent[0] / 2], device=device)[None, None]
|
82 |
+
|
83 |
+
if center is None:
|
84 |
+
center = [extent[0] / 2, extent[1] / 2]
|
85 |
+
|
86 |
+
margin = extent[1] / 64
|
87 |
+
range_y = (margin - extent[0] / 2 + center[0], extent[0] / 2 + center[0] - margin)
|
88 |
+
range_x = (margin - extent[1] / 2 + center[1], extent[1] / 2 + center[1] - margin)
|
89 |
+
grid_y, grid_x = torch.meshgrid(
|
90 |
+
torch.linspace(*range_y, size, device=device),
|
91 |
+
torch.linspace(*range_x, size, device=device),
|
92 |
+
indexing="ij",
|
93 |
+
)
|
94 |
+
return torch.stack([grid_x, grid_y], dim=-1).reshape(1, -1, 2)
|
95 |
+
|
96 |
+
def paint_point_track(
|
97 |
+
frames: np.ndarray,
|
98 |
+
point_tracks: np.ndarray,
|
99 |
+
visibles: np.ndarray,
|
100 |
+
colormap: Optional[List[Tuple[int, int, int]]] = None,
|
101 |
+
) -> np.ndarray:
|
102 |
+
"""Converts a sequence of points to color code video.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
frames: [num_frames, height, width, 3], np.uint8, [0, 255]
|
106 |
+
point_tracks: [num_points, num_frames, 2], np.float32, [0, width / height]
|
107 |
+
visibles: [num_points, num_frames], bool
|
108 |
+
colormap: colormap for points, each point has a different RGB color.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
video: [num_frames, height, width, 3], np.uint8, [0, 255]
|
112 |
+
"""
|
113 |
+
num_points, num_frames = point_tracks.shape[0:2]
|
114 |
+
if colormap is None:
|
115 |
+
colormap = get_colors(num_colors=num_points)
|
116 |
+
height, width = frames.shape[1:3]
|
117 |
+
dot_size_as_fraction_of_min_edge = 0.015
|
118 |
+
# radius = int(round(min(height, width) * dot_size_as_fraction_of_min_edge))
|
119 |
+
radius = 2
|
120 |
+
# print('radius', radius)
|
121 |
+
diam = radius * 2 + 1
|
122 |
+
quadratic_y = np.square(np.arange(diam)[:, np.newaxis] - radius - 1)
|
123 |
+
quadratic_x = np.square(np.arange(diam)[np.newaxis, :] - radius - 1)
|
124 |
+
icon = (quadratic_y + quadratic_x) - (radius**2) / 2.0
|
125 |
+
sharpness = 0.15
|
126 |
+
icon = np.clip(icon / (radius * 2 * sharpness), 0, 1)
|
127 |
+
icon = 1 - icon[:, :, np.newaxis]
|
128 |
+
icon1 = np.pad(icon, [(0, 1), (0, 1), (0, 0)])
|
129 |
+
icon2 = np.pad(icon, [(1, 0), (0, 1), (0, 0)])
|
130 |
+
icon3 = np.pad(icon, [(0, 1), (1, 0), (0, 0)])
|
131 |
+
icon4 = np.pad(icon, [(1, 0), (1, 0), (0, 0)])
|
132 |
+
|
133 |
+
video = frames.copy()
|
134 |
+
for t in range(num_frames):
|
135 |
+
# Pad so that points that extend outside the image frame don't crash us
|
136 |
+
image = np.pad(
|
137 |
+
video[t],
|
138 |
+
[
|
139 |
+
(radius + 1, radius + 1),
|
140 |
+
(radius + 1, radius + 1),
|
141 |
+
(0, 0),
|
142 |
+
],
|
143 |
+
)
|
144 |
+
for i in range(num_points):
|
145 |
+
# The icon is centered at the center of a pixel, but the input coordinates
|
146 |
+
# are raster coordinates. Therefore, to render a point at (1,1) (which
|
147 |
+
# lies on the corner between four pixels), we need 1/4 of the icon placed
|
148 |
+
# centered on the 0'th row, 0'th column, etc. We need to subtract
|
149 |
+
# 0.5 to make the fractional position come out right.
|
150 |
+
x, y = point_tracks[i, t, :] + 0.5
|
151 |
+
x = min(max(x, 0.0), width)
|
152 |
+
y = min(max(y, 0.0), height)
|
153 |
+
|
154 |
+
if visibles[i, t]:
|
155 |
+
x1, y1 = np.floor(x).astype(np.int32), np.floor(y).astype(np.int32)
|
156 |
+
x2, y2 = x1 + 1, y1 + 1
|
157 |
+
|
158 |
+
# bilinear interpolation
|
159 |
+
patch = (
|
160 |
+
icon1 * (x2 - x) * (y2 - y)
|
161 |
+
+ icon2 * (x2 - x) * (y - y1)
|
162 |
+
+ icon3 * (x - x1) * (y2 - y)
|
163 |
+
+ icon4 * (x - x1) * (y - y1)
|
164 |
+
)
|
165 |
+
x_ub = x1 + 2 * radius + 2
|
166 |
+
y_ub = y1 + 2 * radius + 2
|
167 |
+
image[y1:y_ub, x1:x_ub, :] = (1 - patch) * image[
|
168 |
+
y1:y_ub, x1:x_ub, :
|
169 |
+
] + patch * np.array(colormap[i])[np.newaxis, np.newaxis, :]
|
170 |
+
|
171 |
+
# Remove the pad
|
172 |
+
video[t] = image[
|
173 |
+
radius + 1 : -radius - 1, radius + 1 : -radius - 1
|
174 |
+
].astype(np.uint8)
|
175 |
+
return video
|
176 |
+
|
177 |
+
|
178 |
+
PREVIEW_WIDTH = 768 # Width of the preview video
|
179 |
+
PREVIEW_HEIGHT = 768
|
180 |
+
# VIDEO_INPUT_RESO = (384, 512) # Resolution of the input video
|
181 |
+
POINT_SIZE = 1 # Size of the query point in the preview video
|
182 |
+
FRAME_LIMIT = 300 # Limit the number of frames to process
|
183 |
+
|
184 |
+
|
185 |
+
def get_point(frame_num, video_queried_preview, query_points, query_points_color, query_count, evt: gr.SelectData):
|
186 |
+
print(f"You selected {(evt.index[0], evt.index[1], frame_num)}")
|
187 |
+
|
188 |
+
current_frame = video_queried_preview[int(frame_num)]
|
189 |
+
|
190 |
+
# Get the mouse click
|
191 |
+
query_points[int(frame_num)].append((evt.index[0], evt.index[1], frame_num))
|
192 |
+
|
193 |
+
# Choose the color for the point from matplotlib colormap
|
194 |
+
color = matplotlib.colormaps.get_cmap("gist_rainbow")(query_count % 20 / 20)
|
195 |
+
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
196 |
+
# print(f"Color: {color}")
|
197 |
+
query_points_color[int(frame_num)].append(color)
|
198 |
+
|
199 |
+
# Draw the point on the frame
|
200 |
+
x, y = evt.index
|
201 |
+
current_frame_draw = cv2.circle(current_frame, (x, y), POINT_SIZE, color, -1)
|
202 |
+
|
203 |
+
# Update the frame
|
204 |
+
video_queried_preview[int(frame_num)] = current_frame_draw
|
205 |
+
|
206 |
+
# Update the query count
|
207 |
+
query_count += 1
|
208 |
+
return (
|
209 |
+
current_frame_draw, # Updated frame for preview
|
210 |
+
video_queried_preview, # Updated preview video
|
211 |
+
query_points, # Updated query points
|
212 |
+
query_points_color, # Updated query points color
|
213 |
+
query_count # Updated query count
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
def undo_point(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
218 |
+
if len(query_points[int(frame_num)]) == 0:
|
219 |
+
return (
|
220 |
+
video_queried_preview[int(frame_num)],
|
221 |
+
video_queried_preview,
|
222 |
+
query_points,
|
223 |
+
query_points_color,
|
224 |
+
query_count
|
225 |
+
)
|
226 |
+
|
227 |
+
# Get the last point
|
228 |
+
query_points[int(frame_num)].pop(-1)
|
229 |
+
query_points_color[int(frame_num)].pop(-1)
|
230 |
+
|
231 |
+
# Redraw the frame
|
232 |
+
current_frame_draw = video_preview[int(frame_num)].copy()
|
233 |
+
for point, color in zip(query_points[int(frame_num)], query_points_color[int(frame_num)]):
|
234 |
+
x, y, _ = point
|
235 |
+
current_frame_draw = cv2.circle(current_frame_draw, (x, y), POINT_SIZE, color, -1)
|
236 |
+
|
237 |
+
# Update the query count
|
238 |
+
query_count -= 1
|
239 |
+
|
240 |
+
# Update the frame
|
241 |
+
video_queried_preview[int(frame_num)] = current_frame_draw
|
242 |
+
return (
|
243 |
+
current_frame_draw, # Updated frame for preview
|
244 |
+
video_queried_preview, # Updated preview video
|
245 |
+
query_points, # Updated query points
|
246 |
+
query_points_color, # Updated query points color
|
247 |
+
query_count # Updated query count
|
248 |
+
)
|
249 |
+
|
250 |
+
|
251 |
+
def clear_frame_fn(frame_num, video_preview, video_queried_preview, query_points, query_points_color, query_count):
|
252 |
+
query_count -= len(query_points[int(frame_num)])
|
253 |
+
|
254 |
+
query_points[int(frame_num)] = []
|
255 |
+
query_points_color[int(frame_num)] = []
|
256 |
+
|
257 |
+
video_queried_preview[int(frame_num)] = video_preview[int(frame_num)].copy()
|
258 |
+
|
259 |
+
return (
|
260 |
+
video_preview[int(frame_num)], # Set the preview frame to the original frame
|
261 |
+
video_queried_preview,
|
262 |
+
query_points, # Cleared query points
|
263 |
+
query_points_color, # Cleared query points color
|
264 |
+
query_count # New query count
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
def clear_all_fn(frame_num, video_preview):
|
270 |
+
return (
|
271 |
+
video_preview[int(frame_num)],
|
272 |
+
video_preview.copy(),
|
273 |
+
[[] for _ in range(len(video_preview))],
|
274 |
+
[[] for _ in range(len(video_preview))],
|
275 |
+
0
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
def choose_frame(frame_num, video_preview_array):
|
280 |
+
return video_preview_array[int(frame_num)]
|
281 |
+
|
282 |
+
|
283 |
+
def preprocess_video_input(video_path):
|
284 |
+
video_arr = mediapy.read_video(video_path)
|
285 |
+
video_fps = video_arr.metadata.fps
|
286 |
+
num_frames = video_arr.shape[0]
|
287 |
+
if num_frames > FRAME_LIMIT:
|
288 |
+
gr.Warning(f"The video is too long. Only the first {FRAME_LIMIT} frames will be used.", duration=5)
|
289 |
+
video_arr = video_arr[:FRAME_LIMIT]
|
290 |
+
num_frames = FRAME_LIMIT
|
291 |
+
|
292 |
+
# Resize to preview size for faster processing, width = PREVIEW_WIDTH
|
293 |
+
height, width = video_arr.shape[1:3]
|
294 |
+
if height > width:
|
295 |
+
new_height, new_width = PREVIEW_HEIGHT, int(PREVIEW_WIDTH * width / height)
|
296 |
+
else:
|
297 |
+
new_height, new_width = int(PREVIEW_WIDTH * height / width), PREVIEW_WIDTH
|
298 |
+
preview_video = mediapy.resize_video(video_arr, (new_height, new_width))
|
299 |
+
# input_video = mediapy.resize_video(video_arr, VIDEO_INPUT_RESO)
|
300 |
+
# input_video = video_arr
|
301 |
+
input_video = preview_video
|
302 |
+
|
303 |
+
preview_video = np.array(preview_video)
|
304 |
+
input_video = np.array(input_video)
|
305 |
+
|
306 |
+
interactive = True
|
307 |
+
|
308 |
+
return (
|
309 |
+
video_arr, # Original video
|
310 |
+
preview_video, # Original preview video, resized for faster processing
|
311 |
+
preview_video.copy(), # Copy of preview video for visualization
|
312 |
+
input_video, # Resized video input for model
|
313 |
+
# None, # video_feature, # Extracted feature
|
314 |
+
video_fps, # Set the video FPS
|
315 |
+
gr.update(open=False), # Close the video input drawer
|
316 |
+
# tracking_mode, # Set the tracking mode
|
317 |
+
preview_video[0], # Set the preview frame to the first frame
|
318 |
+
gr.update(minimum=0, maximum=num_frames - 1, value=0, interactive=interactive), # Set slider interactive
|
319 |
+
[[] for _ in range(num_frames)], # Set query_points to empty
|
320 |
+
[[] for _ in range(num_frames)], # Set query_points_color to empty
|
321 |
+
[[] for _ in range(num_frames)],
|
322 |
+
0, # Set query count to 0
|
323 |
+
gr.update(interactive=interactive), # Make the buttons interactive
|
324 |
+
gr.update(interactive=interactive),
|
325 |
+
gr.update(interactive=interactive),
|
326 |
+
gr.update(interactive=True),
|
327 |
+
)
|
328 |
+
|
329 |
+
@spaces.GPU
|
330 |
+
def track(
|
331 |
+
video_preview,
|
332 |
+
video_input,
|
333 |
+
video_fps,
|
334 |
+
query_points,
|
335 |
+
query_points_color,
|
336 |
+
query_count,
|
337 |
+
):
|
338 |
+
# tracking_mode = 'selected'
|
339 |
+
# if query_count == 0:
|
340 |
+
# tracking_mode = 'grid'
|
341 |
+
|
342 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
343 |
+
dtype = torch.float if device == "cuda" else torch.float
|
344 |
+
|
345 |
+
print("0 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
346 |
+
|
347 |
+
# # Convert query points to tensor, normalize to input resolution
|
348 |
+
# if tracking_mode!='grid':
|
349 |
+
# query_points_tensor = []
|
350 |
+
# for frame_points in query_points:
|
351 |
+
# query_points_tensor.extend(frame_points)
|
352 |
+
|
353 |
+
# query_points_tensor = torch.tensor(query_points_tensor).float()
|
354 |
+
# query_points_tensor *= torch.tensor([
|
355 |
+
# VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0], 1
|
356 |
+
# ]) / torch.tensor([
|
357 |
+
# [video_preview.shape[2], video_preview.shape[1], 1]
|
358 |
+
# ])
|
359 |
+
# query_points_tensor = query_points_tensor[None].flip(-1).to(device, dtype) # xyt -> tyx
|
360 |
+
# query_points_tensor = query_points_tensor[:, :, [0, 2, 1]] # tyx -> txy
|
361 |
+
|
362 |
+
video_input = torch.tensor(video_input).unsqueeze(0).to(dtype)
|
363 |
+
print("1 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
364 |
+
|
365 |
+
# model = torch.hub.load("facebookresearch/co-tracker", "cotracker3_online")
|
366 |
+
# model = model.to(device)
|
367 |
+
|
368 |
+
from nets.alltracker import Net
|
369 |
+
model = Net(16)
|
370 |
+
url = "https://huggingface.co/aharley/alltracker/resolve/main/alltracker.pth"
|
371 |
+
state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
|
372 |
+
model.load_state_dict(state_dict['model'], strict=True)
|
373 |
+
print('loaded weights from', url)
|
374 |
+
model = model.to(device)
|
375 |
+
print("2 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
376 |
+
|
377 |
+
video_input = video_input.permute(0, 1, 4, 2, 3)
|
378 |
+
|
379 |
+
print('video_input', video_input.shape)
|
380 |
+
# model(video_input, iters=4, sw=None, is_training=False)
|
381 |
+
# # model(video_chunk=video_input, is_first_step=True, grid_size=0, queries=queries, add_support_grid=add_support_grid)
|
382 |
+
|
383 |
+
_, T, _, H, W = video_input.shape
|
384 |
+
utils.basic.print_stats('video_input', video_input)
|
385 |
+
print("3 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
386 |
+
|
387 |
+
grid_xy = utils.basic.gridcloud2d(1, H, W, norm=False, device='cpu:0').float() # 1,H*W,2
|
388 |
+
grid_xy = grid_xy.permute(0,2,1).reshape(1,1,2,H,W) # 1,1,2,H,W
|
389 |
+
print("4 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
390 |
+
|
391 |
+
|
392 |
+
# if tracking_mode=='grid':
|
393 |
+
# xy = get_points_on_a_grid(15, video_input.shape[3:], device=device)
|
394 |
+
# queries = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) #
|
395 |
+
# add_support_grid=False
|
396 |
+
# cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
|
397 |
+
# query_points_color = [[]]
|
398 |
+
# query_count = queries.shape[1]
|
399 |
+
# for i in range(query_count):
|
400 |
+
# # Choose the color for the point from matplotlib colormap
|
401 |
+
# color = cmap(i / float(query_count))
|
402 |
+
# color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
403 |
+
# query_points_color[0].append(color)
|
404 |
+
|
405 |
+
# else:
|
406 |
+
# queries = query_points_tensor
|
407 |
+
# add_support_grid=True
|
408 |
+
|
409 |
+
|
410 |
+
query_frame = 0
|
411 |
+
|
412 |
+
torch.cuda.empty_cache()
|
413 |
+
|
414 |
+
with torch.no_grad():
|
415 |
+
# model.forward_sliding(
|
416 |
+
flows_e, visconf_maps_e, _, _ = \
|
417 |
+
model.forward_sliding(video_input[:, query_frame:], iters=4, sw=None, is_training=False)
|
418 |
+
traj_maps_e = flows_e + grid_xy # B,Tf,2,H,W
|
419 |
+
print("5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
420 |
+
|
421 |
+
if query_frame > 0:
|
422 |
+
backward_flows_e, backward_visconf_maps_e, _, _ = \
|
423 |
+
model.forward_sliding(video_input[:, :query_frame+1].flip([1]), iters=4, sw=None, is_training=False)
|
424 |
+
backward_traj_maps_e = backward_flows_e + grid_xy # B,Tb,2,H,W, reversed
|
425 |
+
backward_traj_maps_e = backward_traj_maps_e.flip([1])[:, :-1] # flip time and drop the overlapped frame
|
426 |
+
backward_visconf_maps_e = backward_visconf_maps_e.flip([1])[:, :-1] # flip time and drop the overlapped frame
|
427 |
+
traj_maps_e = torch.cat([backward_traj_maps_e, traj_maps_e], dim=1) # B,T,2,H,W
|
428 |
+
visconf_maps_e = torch.cat([backward_visconf_maps_e, visconf_maps_e], dim=1) # B,T,2,H,W
|
429 |
+
print("6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
430 |
+
|
431 |
+
# for ind in range(0, video_input.shape[1] - model.step, model.step):
|
432 |
+
# pred_tracks, pred_visibility = model(
|
433 |
+
# video_chunk=video_input[:, ind : ind + model.step * 2],
|
434 |
+
# grid_size=0,
|
435 |
+
# queries=queries,
|
436 |
+
# add_support_grid=add_support_grid
|
437 |
+
# ) # B T N 2, B T N 1
|
438 |
+
# tracks = (pred_tracks * torch.tensor([video_preview.shape[2], video_preview.shape[1]]).to(device) / torch.tensor([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]]).to(device))[0].permute(1, 0, 2).cpu().numpy()
|
439 |
+
# pred_occ = pred_visibility[0].permute(1, 0).cpu().numpy()
|
440 |
+
|
441 |
+
# # make color array
|
442 |
+
# colors = []
|
443 |
+
# for frame_colors in query_points_color:
|
444 |
+
# colors.extend(frame_colors)
|
445 |
+
# colors = np.array(colors)
|
446 |
+
|
447 |
+
traj_maps_e = traj_maps_e[:,:,:,::4,::4] # subsample
|
448 |
+
visconf_maps_e = visconf_maps_e[:,:,:,::4,::4] # subsample
|
449 |
+
|
450 |
+
tracks = traj_maps_e.permute(0,3,4,1,2).reshape(-1,T,2).numpy()
|
451 |
+
visibs = visconf_maps_e.permute(0,3,4,1,2).reshape(-1,T,2)[:,:,0].numpy() > 0.9
|
452 |
+
|
453 |
+
# sc = (np.array([video_preview.shape[2], video_preview.shape[1]]) / np.array([VIDEO_INPUT_RESO[1], VIDEO_INPUT_RESO[0]])).reshape(1,1,2)
|
454 |
+
# print('sc', sc)
|
455 |
+
# tracks = tracks * sc
|
456 |
+
|
457 |
+
query_count = tracks.shape[0]
|
458 |
+
cmap = matplotlib.colormaps.get_cmap("gist_rainbow")
|
459 |
+
query_points_color = [[]]
|
460 |
+
for i in range(query_count):
|
461 |
+
# Choose the color for the point from matplotlib colormap
|
462 |
+
color = cmap(i / float(query_count))
|
463 |
+
color = (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255))
|
464 |
+
query_points_color[0].append(color)
|
465 |
+
# make color array
|
466 |
+
colors = []
|
467 |
+
for frame_colors in query_points_color:
|
468 |
+
colors.extend(frame_colors)
|
469 |
+
colors = np.array(colors)
|
470 |
+
|
471 |
+
painted_video = paint_point_track(video_preview,tracks,visibs,colors)
|
472 |
+
print("7 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
|
473 |
+
|
474 |
+
# save video
|
475 |
+
video_file_name = uuid.uuid4().hex + ".mp4"
|
476 |
+
video_path = os.path.join(os.path.dirname(__file__), "tmp")
|
477 |
+
video_file_path = os.path.join(video_path, video_file_name)
|
478 |
+
os.makedirs(video_path, exist_ok=True)
|
479 |
+
|
480 |
+
mediapy.write_video(video_file_path, painted_video, fps=video_fps)
|
481 |
+
|
482 |
+
return video_file_path
|
483 |
+
|
484 |
+
|
485 |
+
with gr.Blocks() as demo:
|
486 |
+
video = gr.State()
|
487 |
+
video_queried_preview = gr.State()
|
488 |
+
video_preview = gr.State()
|
489 |
+
video_input = gr.State()
|
490 |
+
video_fps = gr.State(24)
|
491 |
+
|
492 |
+
query_points = gr.State([])
|
493 |
+
query_points_color = gr.State([])
|
494 |
+
is_tracked_query = gr.State([])
|
495 |
+
query_count = gr.State(0)
|
496 |
+
|
497 |
+
gr.Markdown("# 🎨 CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos")
|
498 |
+
gr.Markdown("<div style='text-align: left;'> \
|
499 |
+
<p>Welcome to <a href='https://cotracker3.github.io/' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \
|
500 |
+
The model tracks points on a grid or points selected by you. </p> \
|
501 |
+
<p> To get started, simply upload your <b>.mp4</b> video or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \
|
502 |
+
<p> After you uploaded a video, please click \"Submit\" and then click \"Track\" for grid tracking or specify points you want to track before clicking. Enjoy the results! </p>\
|
503 |
+
<p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐. We thank the authors of LocoTrack for their interactive demo.</p> \
|
504 |
+
</div>"
|
505 |
+
)
|
506 |
+
|
507 |
+
|
508 |
+
gr.Markdown("## First step: upload your video or select an example video, and click submit.")
|
509 |
+
with gr.Row():
|
510 |
+
|
511 |
+
|
512 |
+
with gr.Accordion("Your video input", open=True) as video_in_drawer:
|
513 |
+
video_in = gr.Video(label="Video Input", format="mp4")
|
514 |
+
submit = gr.Button("Submit", scale=0)
|
515 |
+
|
516 |
+
import os
|
517 |
+
apple = os.path.join(os.path.dirname(__file__), "videos", "apple.mp4")
|
518 |
+
bear = os.path.join(os.path.dirname(__file__), "videos", "bear.mp4")
|
519 |
+
paragliding_launch = os.path.join(
|
520 |
+
os.path.dirname(__file__), "videos", "paragliding-launch.mp4"
|
521 |
+
)
|
522 |
+
paragliding = os.path.join(os.path.dirname(__file__), "videos", "paragliding.mp4")
|
523 |
+
cat = os.path.join(os.path.dirname(__file__), "videos", "cat.mp4")
|
524 |
+
pillow = os.path.join(os.path.dirname(__file__), "videos", "pillow.mp4")
|
525 |
+
teddy = os.path.join(os.path.dirname(__file__), "videos", "teddy.mp4")
|
526 |
+
backpack = os.path.join(os.path.dirname(__file__), "videos", "backpack.mp4")
|
527 |
+
|
528 |
+
|
529 |
+
gr.Examples(examples=[bear, apple, paragliding, paragliding_launch, cat, pillow, teddy, backpack],
|
530 |
+
inputs = [
|
531 |
+
video_in
|
532 |
+
],
|
533 |
+
)
|
534 |
+
|
535 |
+
|
536 |
+
gr.Markdown("## Second step: Simply click \"Track\" to track a grid of points or select query points on the video before clicking")
|
537 |
+
with gr.Row():
|
538 |
+
with gr.Column():
|
539 |
+
with gr.Row():
|
540 |
+
query_frames = gr.Slider(
|
541 |
+
minimum=0, maximum=100, value=0, step=1, label="Choose Frame", interactive=False)
|
542 |
+
with gr.Row():
|
543 |
+
undo = gr.Button("Undo", interactive=False)
|
544 |
+
clear_frame = gr.Button("Clear Frame", interactive=False)
|
545 |
+
clear_all = gr.Button("Clear All", interactive=False)
|
546 |
+
|
547 |
+
with gr.Row():
|
548 |
+
current_frame = gr.Image(
|
549 |
+
label="Click to add query points",
|
550 |
+
type="numpy",
|
551 |
+
interactive=False
|
552 |
+
)
|
553 |
+
|
554 |
+
with gr.Row():
|
555 |
+
track_button = gr.Button("Track", interactive=False)
|
556 |
+
|
557 |
+
with gr.Column():
|
558 |
+
output_video = gr.Video(
|
559 |
+
label="Output Video",
|
560 |
+
interactive=False,
|
561 |
+
autoplay=True,
|
562 |
+
loop=True,
|
563 |
+
)
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
submit.click(
|
568 |
+
fn = preprocess_video_input,
|
569 |
+
inputs = [video_in],
|
570 |
+
outputs = [
|
571 |
+
video,
|
572 |
+
video_preview,
|
573 |
+
video_queried_preview,
|
574 |
+
video_input,
|
575 |
+
video_fps,
|
576 |
+
video_in_drawer,
|
577 |
+
current_frame,
|
578 |
+
query_frames,
|
579 |
+
query_points,
|
580 |
+
query_points_color,
|
581 |
+
is_tracked_query,
|
582 |
+
query_count,
|
583 |
+
undo,
|
584 |
+
clear_frame,
|
585 |
+
clear_all,
|
586 |
+
track_button,
|
587 |
+
],
|
588 |
+
queue = False
|
589 |
+
)
|
590 |
+
|
591 |
+
query_frames.change(
|
592 |
+
fn = choose_frame,
|
593 |
+
inputs = [query_frames, video_queried_preview],
|
594 |
+
outputs = [
|
595 |
+
current_frame,
|
596 |
+
],
|
597 |
+
queue = False
|
598 |
+
)
|
599 |
+
|
600 |
+
current_frame.select(
|
601 |
+
fn = get_point,
|
602 |
+
inputs = [
|
603 |
+
query_frames,
|
604 |
+
video_queried_preview,
|
605 |
+
query_points,
|
606 |
+
query_points_color,
|
607 |
+
query_count,
|
608 |
+
],
|
609 |
+
outputs = [
|
610 |
+
current_frame,
|
611 |
+
video_queried_preview,
|
612 |
+
query_points,
|
613 |
+
query_points_color,
|
614 |
+
query_count
|
615 |
+
],
|
616 |
+
queue = False
|
617 |
+
)
|
618 |
+
|
619 |
+
undo.click(
|
620 |
+
fn = undo_point,
|
621 |
+
inputs = [
|
622 |
+
query_frames,
|
623 |
+
video_preview,
|
624 |
+
video_queried_preview,
|
625 |
+
query_points,
|
626 |
+
query_points_color,
|
627 |
+
query_count
|
628 |
+
],
|
629 |
+
outputs = [
|
630 |
+
current_frame,
|
631 |
+
video_queried_preview,
|
632 |
+
query_points,
|
633 |
+
query_points_color,
|
634 |
+
query_count
|
635 |
+
],
|
636 |
+
queue = False
|
637 |
+
)
|
638 |
+
|
639 |
+
clear_frame.click(
|
640 |
+
fn = clear_frame_fn,
|
641 |
+
inputs = [
|
642 |
+
query_frames,
|
643 |
+
video_preview,
|
644 |
+
video_queried_preview,
|
645 |
+
query_points,
|
646 |
+
query_points_color,
|
647 |
+
query_count
|
648 |
+
],
|
649 |
+
outputs = [
|
650 |
+
current_frame,
|
651 |
+
video_queried_preview,
|
652 |
+
query_points,
|
653 |
+
query_points_color,
|
654 |
+
query_count
|
655 |
+
],
|
656 |
+
queue = False
|
657 |
+
)
|
658 |
+
|
659 |
+
clear_all.click(
|
660 |
+
fn = clear_all_fn,
|
661 |
+
inputs = [
|
662 |
+
query_frames,
|
663 |
+
video_preview,
|
664 |
+
],
|
665 |
+
outputs = [
|
666 |
+
current_frame,
|
667 |
+
video_queried_preview,
|
668 |
+
query_points,
|
669 |
+
query_points_color,
|
670 |
+
query_count
|
671 |
+
],
|
672 |
+
queue = False
|
673 |
+
)
|
674 |
+
|
675 |
+
|
676 |
+
track_button.click(
|
677 |
+
fn = track,
|
678 |
+
inputs = [
|
679 |
+
video_preview,
|
680 |
+
video_input,
|
681 |
+
video_fps,
|
682 |
+
query_points,
|
683 |
+
query_points_color,
|
684 |
+
query_count,
|
685 |
+
],
|
686 |
+
outputs = [
|
687 |
+
output_video,
|
688 |
+
],
|
689 |
+
queue = True,
|
690 |
+
)
|
691 |
+
|
692 |
+
|
693 |
+
# demo.launch(show_api=False, show_error=True, debug=False, share=False)
|
694 |
+
demo.launch(show_api=False, show_error=True, debug=False, share=True)
|