Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import os
|
2 |
import random
|
|
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
import torch
|
@@ -17,6 +19,7 @@ import utils.misc
|
|
17 |
import utils.saveload
|
18 |
from nets.blocks import InputPadder
|
19 |
from nets.net34 import Net
|
|
|
20 |
import imageio
|
21 |
from demo_dense_visualize import Tracker
|
22 |
import spaces
|
@@ -47,25 +50,11 @@ seed_everything(42)
|
|
47 |
torch.set_grad_enabled(False)
|
48 |
|
49 |
# -------------------- Model Loading -------------------- #
|
50 |
-
|
51 |
-
|
52 |
-
ckpt_dir = 'checkpoints'
|
53 |
-
load_dir = os.path.join(ckpt_dir, init_dir)
|
54 |
-
|
55 |
-
# Create the model and load weights.
|
56 |
model = Net(16)
|
57 |
count_parameters(model)
|
58 |
-
|
59 |
-
None,
|
60 |
-
load_dir,
|
61 |
-
model,
|
62 |
-
optimizer=None,
|
63 |
-
scheduler=None,
|
64 |
-
ignore_load=None,
|
65 |
-
strict=True,
|
66 |
-
verbose=False,
|
67 |
-
weights_only=False,
|
68 |
-
)
|
69 |
model.cuda()
|
70 |
for n, p in model.named_parameters():
|
71 |
p.requires_grad = False
|
@@ -260,7 +249,7 @@ if __name__ == '__main__':
|
|
260 |
|
261 |
with gr.Row():
|
262 |
with gr.Column():
|
263 |
-
video_input = gr.Video(label="Upload Video", value="data/
|
264 |
extract_btn = gr.Button("Extract First Frame")
|
265 |
# Add sliders for resolution and sliding window length.
|
266 |
resolution_slider = gr.Slider(minimum=512, maximum=1024, step=256, value=1024, label="Target Resolution")
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
import time
|
4 |
+
import datetime
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
19 |
import utils.saveload
|
20 |
from nets.blocks import InputPadder
|
21 |
from nets.net34 import Net
|
22 |
+
from tensorboardX import SummaryWriter
|
23 |
import imageio
|
24 |
from demo_dense_visualize import Tracker
|
25 |
import spaces
|
|
|
50 |
torch.set_grad_enabled(False)
|
51 |
|
52 |
# -------------------- Model Loading -------------------- #
|
53 |
+
url = "https://huggingface.co/aharley/alltracker/resolve/main/alltracker.pth"
|
54 |
+
state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
|
|
|
|
|
|
|
|
|
55 |
model = Net(16)
|
56 |
count_parameters(model)
|
57 |
+
model.load_state_dict(state_dict, strict=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
model.cuda()
|
59 |
for n, p in model.named_parameters():
|
60 |
p.requires_grad = False
|
|
|
249 |
|
250 |
with gr.Row():
|
251 |
with gr.Column():
|
252 |
+
video_input = gr.Video(label="Upload Video", value="data/244754_medium.mp4")
|
253 |
extract_btn = gr.Button("Extract First Frame")
|
254 |
# Add sliders for resolution and sliding window length.
|
255 |
resolution_slider = gr.Slider(minimum=512, maximum=1024, step=256, value=1024, label="Target Resolution")
|