Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -41,7 +41,7 @@ def seed_everything(seed: int):
|
|
41 |
os.environ["PYTHONHASHSEED"] = str(seed)
|
42 |
np.random.seed(seed)
|
43 |
torch.manual_seed(seed)
|
44 |
-
torch.cuda.manual_seed(seed)
|
45 |
torch.backends.cudnn.deterministic = True
|
46 |
torch.backends.cudnn.benchmark = False
|
47 |
|
@@ -55,15 +55,16 @@ model = Net(16)
|
|
55 |
count_parameters(model)
|
56 |
model.load_state_dict(state_dict['model'], strict=True)
|
57 |
print('loaded ckpt')
|
58 |
-
|
|
|
59 |
for n, p in model.named_parameters():
|
60 |
p.requires_grad = False
|
61 |
model.eval()
|
62 |
|
63 |
tracker = Tracker(
|
64 |
model=model,
|
65 |
-
mean=torch.tensor([0.485, 0.456, 0.406]).
|
66 |
-
std=torch.tensor([0.229, 0.224, 0.225]).
|
67 |
S=16,
|
68 |
stride=8,
|
69 |
inference_iters=4,
|
@@ -154,7 +155,8 @@ def process_video_with_points(video_path, click_points):
|
|
154 |
frame_disps = []
|
155 |
try:
|
156 |
while True:
|
157 |
-
|
|
|
158 |
ret, frame = cap.read()
|
159 |
if not ret:
|
160 |
break
|
@@ -195,7 +197,8 @@ def process_video_with_points(video_path, click_points):
|
|
195 |
except RuntimeError as e:
|
196 |
# Check if the error message indicates an OOM error.
|
197 |
if "out of memory" in str(e).lower():
|
198 |
-
|
|
|
199 |
pbar.close()
|
200 |
cap.release()
|
201 |
print("Error: Out of Memory during video processing.")
|
|
|
41 |
os.environ["PYTHONHASHSEED"] = str(seed)
|
42 |
np.random.seed(seed)
|
43 |
torch.manual_seed(seed)
|
44 |
+
# torch.cuda.manual_seed(seed)
|
45 |
torch.backends.cudnn.deterministic = True
|
46 |
torch.backends.cudnn.benchmark = False
|
47 |
|
|
|
55 |
count_parameters(model)
|
56 |
model.load_state_dict(state_dict['model'], strict=True)
|
57 |
print('loaded ckpt')
|
58 |
+
device = 'cpu:0'
|
59 |
+
model.to(device)
|
60 |
for n, p in model.named_parameters():
|
61 |
p.requires_grad = False
|
62 |
model.eval()
|
63 |
|
64 |
tracker = Tracker(
|
65 |
model=model,
|
66 |
+
mean=torch.tensor([0.485, 0.456, 0.406]).to(device).reshape(1, 3, 1, 1),
|
67 |
+
std=torch.tensor([0.229, 0.224, 0.225]).to(device).reshape(1, 3, 1, 1),
|
68 |
S=16,
|
69 |
stride=8,
|
70 |
inference_iters=4,
|
|
|
155 |
frame_disps = []
|
156 |
try:
|
157 |
while True:
|
158 |
+
if 'cuda' in device:
|
159 |
+
torch.cuda.empty_cache()
|
160 |
ret, frame = cap.read()
|
161 |
if not ret:
|
162 |
break
|
|
|
197 |
except RuntimeError as e:
|
198 |
# Check if the error message indicates an OOM error.
|
199 |
if "out of memory" in str(e).lower():
|
200 |
+
if 'cuda' in device:
|
201 |
+
torch.cuda.empty_cache()
|
202 |
pbar.close()
|
203 |
cap.release()
|
204 |
print("Error: Out of Memory during video processing.")
|