import os import random import torch import sys import torch.nn.functional as F import numpy as np import utils.loss import utils.samp import utils.data import utils.improc import utils.misc import utils.saveload import cv2 import imageio from nets.blocks import InputPadder from utils.visualizer import Visualizer import torch import requests from PIL import Image, ImageDraw from transformers import AutoProcessor, AutoModelForCausalLM import numpy as np torch.set_float32_matmul_precision('medium') def run_example(processor, model, task_prompt, image, text_input=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.float32) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return parsed_answer class Tracker: def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'): """ Initializes the Tracker. Args: model: The model used to compute feature maps and forward window flow. mean: Tensor or value used for normalizing the input. std: Tensor or value used for normalizing the input. S: Window size for the tracker. stride: The stride used when updating the window. inference_iters: Number of inference iterations. device: Torch device, defaults to 'cuda'. """ self.model = model self.mean = mean self.std = std self.S = S self.stride = stride self.inference_iters = inference_iters self.device = device self.target_res = target_res self.padder = None self.cnt = 0 self.fmap_anchor = None self.fmaps2 = None self.flows8 = None self.visconfs8 = None self.flows = [] # List to store computed flows self.visibs = [] # List to store visibility confidences self.rgbs = [] # List to store RGB frames def reset(self): """Reset the tracker state.""" self.padder = None self.cnt = 0 self.fmap_anchor = None self.fmaps2 = None self.flows8 = None self.visconfs8 = None self.flows = [] self.visibs = [] self.rgbs = [] def preprocess(self, rgb_frame): # Resize frame (scale to keep maximum dimension ~1024) scale = min(self.target_res / rgb_frame.shape[0], self.target_res / rgb_frame.shape[1]) rgb_resized = cv2.resize(rgb_frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR) # Convert to tensor, normalize and move to device. rgb_tensor = torch.from_numpy(rgb_resized).permute(2, 0, 1).float().unsqueeze(0).to(self.device) rgb_tensor = rgb_tensor / 255.0 self.rgbs.append(rgb_tensor.cpu()) # import pdb; pdb.set_trace() rgb_tensor = (rgb_tensor - self.mean) / self.std return rgb_tensor @torch.no_grad() def track(self, rgb_frame): """ Process a single RGB frame and return the computed flow when available. Args: rgb_frame: A NumPy array containing the RGB frame. (Assumed to be in RGB; if coming from OpenCV, convert it before passing.) Returns: flow_predictions: The predicted flow for the current frame (or None if not enough frames have been processed). """ torch.cuda.empty_cache() rgb_tensor = self.preprocess(rgb_frame) # Initialize padder on the first frame. if self.cnt == 0: self.padder = InputPadder(rgb_tensor.shape) rgb_padded = self.padder.pad(rgb_tensor)[0] _, _, H_pad, W_pad = rgb_padded.shape C = 256 # Feature map channel dimension (could be parameterized if needed) H8, W8 = H_pad // 8, W_pad // 8 # Accumulate feature maps until the window is full. if self.cnt == 0: self.fmap_anchor = self.model.get_fmaps(rgb_padded, 1, 1, None, False, False).reshape(1, C, H8, W8) self.fmaps2 = self.fmap_anchor[:, None] self.cnt += 1 return None new_fmap = self.model.get_fmaps(rgb_padded, 1, 1, None, False, False).reshape(1, 1, C, H8, W8) self.fmaps2 = torch.cat([self.fmaps2[:, (1 if self.fmaps2.shape[1] >= self.S else 0):].detach().clone(), new_fmap], dim=1) # need to track if self.cnt - self.S + 1 >= 0 and (self.cnt - self.S + 1) % self.stride == 0: # Initialize or update temporary flow buffers. iter_num = self.inference_iters if self.flows8 is None: self.flows8 = torch.zeros((self.S, 2, H_pad // 8, W_pad // 8), device=self.device) self.visconfs8 = torch.zeros((self.S, 2, H_pad // 8, W_pad // 8), device=self.device) # iter_num = self.inference_iters else: self.flows8 = torch.cat([ self.flows8[self.stride:self.stride + self.S // 2].detach().clone(), self.flows8[self.stride + self.S // 2 - 1:self.stride + self.S // 2].detach().clone().repeat(self.S // 2, 1, 1, 1) ]) self.visconfs8 = torch.cat([ self.visconfs8[self.stride:self.stride + self.S // 2].detach().clone(), self.visconfs8[self.stride + self.S // 2 - 1:self.stride + self.S // 2].detach().clone().repeat(self.S // 2, 1, 1, 1) ]) # import pdb; pdb.set_trace() # Compute flow predictions using the model's forward window. flow_predictions, visconf_predictions, self.flows8, self.visconfs8, _ = self.model.forward_window( self.fmap_anchor, self.fmaps2, self.visconfs8, iters=iter_num, flowfeat=None, flows8=self.flows8, is_training=False ) flow_predictions = self.padder.unpad(flow_predictions[-1][0 if self.cnt == self.S - 1 else -self.stride:]) visconf_predictions = self.padder.unpad(torch.sigmoid(visconf_predictions[-1][0 if self.cnt == self.S - 1 else -self.stride:])) self.cnt += 1 self.flows.append(flow_predictions.cpu()) self.visibs.append(visconf_predictions.cpu()) return flow_predictions, visconf_predictions self.cnt += 1 return None