File size: 21,046 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import math
import unittest

from transformers import MptConfig, is_torch_available
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MPT_PRETRAINED_MODEL_ARCHIVE_LIST,
        AutoTokenizer,
        MptForCausalLM,
        MptForQuestionAnswering,
        MptForSequenceClassification,
        MptForTokenClassification,
        MptModel,
    )


@require_torch
class MptModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=False,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_dropout_prob = attention_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def get_large_model_config(self):
        return MptConfig.from_pretrained("mosaicml/mpt-7b")

    def prepare_config_and_inputs(self, gradient_checkpointing=False):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config(gradient_checkpointing=gradient_checkpointing)

        return (config, input_ids, input_mask, sequence_labels)

    def get_config(self, gradient_checkpointing=False):
        return MptConfig(
            vocab_size=self.vocab_size,
            seq_length=self.seq_length,
            hidden_size=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            hidden_dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            num_labels=self.num_labels,
            gradient_checkpointing=gradient_checkpointing,
            dtype="float32",
        )

    def create_and_check_mpt_model(self, config, input_ids, input_mask, *args):
        model = MptModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.n_layers)

    def create_and_check_mpt_model_past(self, config, input_ids, input_mask, *args):
        model = MptModel(config=config)

        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True)
        outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids))
        outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids))

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_mpt_model_attention_mask_past(self, config, input_ids, input_mask, *args):
        model = MptModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_mpt_model_past_large_inputs(self, config, input_ids, input_mask, *args):
        model = MptModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            output_hidden_states=True,
        )
        hidden_states_from_no_past = output_from_no_past["hidden_states"][0]

        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )
        hidden_states_from_past = output_from_past["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), hidden_states_from_past.shape[-1]).item()
        output_from_no_past_slice = hidden_states_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = hidden_states_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args):
        model = MptForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args):
        config.num_labels = self.num_labels
        model = MptForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args):
        model = MptForTokenClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args):
        model = MptForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, *args, gradient_checkpointing=False
    ):
        model = MptForCausalLM(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def create_and_check_mpt_weight_initialization(self, config, *args):
        model = MptModel(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layers)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        config, input_ids, input_mask, sequence_labels = config_and_inputs

        inputs_dict = {"input_ids": input_ids}

        return config, inputs_dict


class MptConfigTester(ConfigTester):
    def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs):
        super().__init__(parent, config_class, has_text_modality, common_properties, **kwargs)

    def test_attn_config_as_dict(self):
        config = self.config_class(**self.inputs_dict, attn_config={"attn_impl": "flash", "softmax_scale": None})
        self.parent.assertTrue(config.attn_config.attn_impl == "flash")
        self.parent.assertTrue(config.attn_config.softmax_scale is None)

    def run_common_tests(self):
        self.test_attn_config_as_dict()
        return super().run_common_tests()


@require_torch
class MptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            MptModel,
            MptForCausalLM,
            MptForSequenceClassification,
            MptForTokenClassification,
            MptForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )

    all_generative_model_classes = (MptForCausalLM,) if is_torch_available() else ()
    fx_compatible = False
    test_missing_keys = False
    test_pruning = False
    test_torchscript = False
    test_head_masking = False
    pipeline_model_mapping = (
        {
            "feature-extraction": MptModel,
            "question-answering": MptForQuestionAnswering,
            "text-classification": MptForSequenceClassification,
            "text-generation": MptForCausalLM,
            "token-classification": MptForTokenClassification,
            "zero-shot": MptForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )

    def setUp(self):
        self.model_tester = MptModelTester(self)
        self.config_tester = MptConfigTester(self, config_class=MptConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpt_model(*config_and_inputs)

    def test_mpt_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpt_model_past(*config_and_inputs)

    def test_mpt_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpt_model_attention_mask_past(*config_and_inputs)

    def test_mpt_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpt_model_past_large_inputs(*config_and_inputs)

    def test_mpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_mpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs)

    def test_mpt_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_token_classification_model(*config_and_inputs)

    def test_mpt_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)

    def test_mpt_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpt_weight_initialization(*config_and_inputs)

    @unittest.skip("For backward compatibility the lm_head is not in the model's state dict on the Hub.")
    def test_model_weights_reload_no_missing_tied_weights(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in MPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = MptModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@slow
@require_torch_gpu
@require_bitsandbytes
class MptIntegrationTests(unittest.TestCase):
    def test_generation_8k(self):
        model_id = "mosaicml/mpt-7b-8k"
        tokenizer = AutoTokenizer.from_pretrained(model_id)

        # Load in 4bit to fit the daily CI runner GPU RAM
        model = MptForCausalLM.from_pretrained(
            model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
        )

        input_text = "Hello"
        expected_output = 'Hello, I\'m a new user of the forum. I have a question about the "Safety"'

        inputs = tokenizer(input_text, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=20)

        decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        self.assertEqual(decoded_output, expected_output)

    def test_generation(self):
        model_id = "mosaicml/mpt-7b"
        tokenizer = AutoTokenizer.from_pretrained(model_id)

        # Load in 4bit to fit the daily CI runner GPU RAM
        model = MptForCausalLM.from_pretrained(
            model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
        )

        input_text = "Hello"
        expected_output = (
            "Hello and welcome to the first day of the new release countdown for the month of May!\nToday"
        )

        inputs = tokenizer(input_text, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=20)

        decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        self.assertEqual(decoded_output, expected_output)

    def test_generation_batched(self):
        model_id = "mosaicml/mpt-7b"
        tokenizer = AutoTokenizer.from_pretrained(model_id)

        # Load in 4bit to fit the daily CI runner GPU RAM
        model = MptForCausalLM.from_pretrained(
            model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
        )

        input_texts = ["Hello my name is", "Today I am going at the gym and"]
        tokenizer.pad_token_id = tokenizer.eos_token_id
        tokenizer.padding_side = "left"

        inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(torch_device)

        expected_output = [
            "Hello my name is Tiffany and I am a mother of two beautiful children. I have been a nanny for over",
            "Today I am going at the gym and then I am going to go to the grocery store and get some food. I am going to make",
        ]
        outputs = model.generate(**inputs, max_new_tokens=20)

        decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        for i, predicted_output in enumerate(decoded_outputs):
            self.assertEqual(predicted_output, expected_output[i])

    def test_model_logits(self):
        model_id = "mosaicml/mpt-7b"

        # Load in 4bit to fit the daily CI runner GPU RAM
        model = MptForCausalLM.from_pretrained(
            model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
        )

        dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device)

        outputs = model(dummy_input, output_hidden_states=True)

        expected_slice = torch.Tensor([-0.2539, -0.2178, -0.1953]).to(torch_device, torch.bfloat16)
        predicted_slice = outputs.hidden_states[-1][0, 0, :3]

        self.assertTrue(torch.allclose(expected_slice, predicted_slice, atol=1e-3, rtol=1e-3))