Spaces:
Paused
Paused
File size: 21,046 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
import unittest
from transformers import MptConfig, is_torch_available
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPT_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoTokenizer,
MptForCausalLM,
MptForQuestionAnswering,
MptForSequenceClassification,
MptForTokenClassification,
MptModel,
)
@require_torch
class MptModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=False,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def get_large_model_config(self):
return MptConfig.from_pretrained("mosaicml/mpt-7b")
def prepare_config_and_inputs(self, gradient_checkpointing=False):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config(gradient_checkpointing=gradient_checkpointing)
return (config, input_ids, input_mask, sequence_labels)
def get_config(self, gradient_checkpointing=False):
return MptConfig(
vocab_size=self.vocab_size,
seq_length=self.seq_length,
hidden_size=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_dropout_prob,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
num_labels=self.num_labels,
gradient_checkpointing=gradient_checkpointing,
dtype="float32",
)
def create_and_check_mpt_model(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.past_key_values), config.n_layers)
def create_and_check_mpt_model_past(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True)
outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids))
outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids))
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_mpt_model_attention_mask_past(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = self.seq_length // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_mpt_model_past_large_inputs(self, config, input_ids, input_mask, *args):
model = MptModel(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
)
hidden_states_from_no_past = output_from_no_past["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)
hidden_states_from_past = output_from_past["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), hidden_states_from_past.shape[-1]).item()
output_from_no_past_slice = hidden_states_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = hidden_states_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args):
model = MptForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args):
config.num_labels = self.num_labels
model = MptForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args):
model = MptForTokenClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args):
model = MptForQuestionAnswering(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_forward_and_backwards(
self, config, input_ids, input_mask, *args, gradient_checkpointing=False
):
model = MptForCausalLM(config)
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
result = model(input_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
result.loss.backward()
def create_and_check_mpt_weight_initialization(self, config, *args):
model = MptModel(config)
model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layers)
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask, sequence_labels = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
class MptConfigTester(ConfigTester):
def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs):
super().__init__(parent, config_class, has_text_modality, common_properties, **kwargs)
def test_attn_config_as_dict(self):
config = self.config_class(**self.inputs_dict, attn_config={"attn_impl": "flash", "softmax_scale": None})
self.parent.assertTrue(config.attn_config.attn_impl == "flash")
self.parent.assertTrue(config.attn_config.softmax_scale is None)
def run_common_tests(self):
self.test_attn_config_as_dict()
return super().run_common_tests()
@require_torch
class MptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
MptModel,
MptForCausalLM,
MptForSequenceClassification,
MptForTokenClassification,
MptForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (MptForCausalLM,) if is_torch_available() else ()
fx_compatible = False
test_missing_keys = False
test_pruning = False
test_torchscript = False
test_head_masking = False
pipeline_model_mapping = (
{
"feature-extraction": MptModel,
"question-answering": MptForQuestionAnswering,
"text-classification": MptForSequenceClassification,
"text-generation": MptForCausalLM,
"token-classification": MptForTokenClassification,
"zero-shot": MptForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = MptModelTester(self)
self.config_tester = MptConfigTester(self, config_class=MptConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_mpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model(*config_and_inputs)
def test_mpt_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_past(*config_and_inputs)
def test_mpt_model_att_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_attention_mask_past(*config_and_inputs)
def test_mpt_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_model_past_large_inputs(*config_and_inputs)
def test_mpt_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
def test_mpt_sequence_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs)
def test_mpt_token_classification_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_token_classification_model(*config_and_inputs)
def test_mpt_gradient_checkpointing(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
def test_mpt_weight_initialization(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpt_weight_initialization(*config_and_inputs)
@unittest.skip("For backward compatibility the lm_head is not in the model's state dict on the Hub.")
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in MPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MptModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
@require_torch_gpu
@require_bitsandbytes
class MptIntegrationTests(unittest.TestCase):
def test_generation_8k(self):
model_id = "mosaicml/mpt-7b-8k"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_text = "Hello"
expected_output = 'Hello, I\'m a new user of the forum. I have a question about the "Safety"'
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
self.assertEqual(decoded_output, expected_output)
def test_generation(self):
model_id = "mosaicml/mpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_text = "Hello"
expected_output = (
"Hello and welcome to the first day of the new release countdown for the month of May!\nToday"
)
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
self.assertEqual(decoded_output, expected_output)
def test_generation_batched(self):
model_id = "mosaicml/mpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
input_texts = ["Hello my name is", "Today I am going at the gym and"]
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(torch_device)
expected_output = [
"Hello my name is Tiffany and I am a mother of two beautiful children. I have been a nanny for over",
"Today I am going at the gym and then I am going to go to the grocery store and get some food. I am going to make",
]
outputs = model.generate(**inputs, max_new_tokens=20)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
for i, predicted_output in enumerate(decoded_outputs):
self.assertEqual(predicted_output, expected_output[i])
def test_model_logits(self):
model_id = "mosaicml/mpt-7b"
# Load in 4bit to fit the daily CI runner GPU RAM
model = MptForCausalLM.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True
)
dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device)
outputs = model(dummy_input, output_hidden_states=True)
expected_slice = torch.Tensor([-0.2539, -0.2178, -0.1953]).to(torch_device, torch.bfloat16)
predicted_slice = outputs.hidden_states[-1][0, 0, :3]
self.assertTrue(torch.allclose(expected_slice, predicted_slice, atol=1e-3, rtol=1e-3))
|