Spaces:
Paused
Paused
File size: 34,435 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Pix2Struct model. """
import copy
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
Pix2StructForConditionalGeneration,
Pix2StructProcessor,
Pix2StructTextModel,
Pix2StructVisionModel,
)
from transformers.models.pix2struct.modeling_pix2struct import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
is_torch_greater_or_equal_than_1_11 = False
if is_vision_available():
from PIL import Image
class Pix2StructVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=12,
patch_embed_hidden_size=12,
projection_dim=32,
max_patches=64,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_embed_hidden_size = patch_embed_hidden_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.max_patches = max_patches
self.seq_length = self.max_patches
self.patch_proj_dim = ((patch_size**2) * num_channels) + 2
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
flattened_patches = floats_tensor([self.batch_size, self.max_patches, self.patch_proj_dim])
config = self.get_config()
return config, flattened_patches
def get_config(self):
return Pix2StructVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
patch_embed_hidden_size=self.patch_embed_hidden_size,
)
def create_and_check_model(self, config, flattened_patches):
model = Pix2StructVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(flattened_patches)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, flattened_patches = config_and_inputs
inputs_dict = {
"flattened_patches": flattened_patches,
"attention_mask": torch.randint(0, 2, (self.batch_size, self.max_patches)),
}
return config, inputs_dict
@require_torch
class Pix2StructVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Pix2Struct does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Pix2StructVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Pix2StructVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Pix2StructVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Pix2StructVision does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["flattened_patches"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
def test_training(self):
pass
@unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Pix2StructVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Pix2StructTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=12,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.d_kv = hidden_size // num_attention_heads
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return Pix2StructTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
d_kv=self.d_kv,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = Pix2StructTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class Pix2StructTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Pix2StructTextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = Pix2StructTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Pix2StructTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
def test_training(self):
pass
@unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Pix2Struct does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Pix2StructTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Pix2StructModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = Pix2StructTextModelTester(parent, **text_kwargs)
self.vision_model_tester = Pix2StructVisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, flattened_patches = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config(text_config, vision_config)
return config, input_ids, attention_mask, flattened_patches
def get_config(self, text_config, vision_config):
return Pix2StructConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, decoder_attention_mask, flattened_patches = config_and_inputs
attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
inputs_dict = {
"decoder_input_ids": input_ids,
"labels": input_ids,
"decoder_attention_mask": decoder_attention_mask,
"flattened_patches": flattened_patches,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-to-text": Pix2StructForConditionalGeneration} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Pix2StructModelTester(self)
def test_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
output = model(**input_dict)
self.assertEqual(
output[1].shape,
(
self.model_tester.vision_model_tester.batch_size,
self.model_tester.text_model_tester.seq_length,
self.model_tester.text_model_tester.vocab_size,
),
)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Pix2StructModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"flattened_patches",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
"head_mask",
"decoder_head_mask",
"cross_attn_head_mask",
"encoder_outputs",
"past_key_values",
"labels",
"decoder_inputs_embeds",
"use_cache",
]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes[:-1]:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
# hardcode labels to be the same as input_ids
inputs["labels"] = inputs["input_ids"]
loss = model(**inputs).loss
loss.backward()
# override as the `logit_scale` parameter initilization is different for Pix2Struct
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig`
def test_resize_tokens_embeddings(self):
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Decoder input ids should be clamped to the maximum size of the vocabulary
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig`
def test_resize_embeddings_untied(self):
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Decoder input ids should be clamped to the maximum size of the vocabulary
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
@unittest.skip(reason="Pix2Struct doesn't use tied weights")
def test_tied_model_weights_key_ignore(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
flattened_patches = inputs_dict["flattened_patches"] # Pix2Struct needs flattened_patches
traced_model = torch.jit.trace(model, (input_ids, flattened_patches))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save Pix2StructConfig and check if we can load Pix2StructVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Pix2StructVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Pix2StructConfig and check if we can load Pix2StructTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
# We will verify our results on an image of a stop sign
def prepare_img():
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11,
reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.",
)
@require_vision
@require_torch
@slow
class Pix2StructIntegrationTest(unittest.TestCase):
def test_inference_image_captioning(self):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
image = prepare_img()
# image only
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs)
self.assertEqual(
processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner."
)
def test_batched_inference_image_captioning(self):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
image_1 = prepare_img()
second_url = (
"https://www.connollycove.com/wp-content/uploads/2019/06/temple-bar-dublin-world-famous-irish-pub.jpg"
)
image_2 = Image.open(requests.get(second_url, stream=True).raw)
# image only
inputs = processor(images=[image_1, image_2], return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs)
self.assertEqual(
processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner."
)
self.assertEqual(
processor.decode(predictions[1], skip_special_tokens=True),
"A row of books including The Temple Bar and Guiness.",
)
def test_batched_inference_image_captioning_conditioned(self):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
image_1 = prepare_img()
second_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg"
image_2 = Image.open(requests.get(second_url, stream=True).raw)
texts = ["A picture of", "An photography of"]
# image only
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", add_special_tokens=False).to(
torch_device
)
predictions = model.generate(**inputs)
self.assertEqual(
processor.decode(predictions[0], skip_special_tokens=True),
"A picture of a stop sign with a red stop sign",
)
self.assertEqual(
processor.decode(predictions[1], skip_special_tokens=True),
"An photography of the Temple Bar and other places in the city.",
)
def test_vqa_model(self):
model_id = "google/pix2struct-ai2d-base"
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)
model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(
torch_device
)
processor = Pix2StructProcessor.from_pretrained(model_id)
# image only
text = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
inputs = processor(images=image, return_tensors="pt", text=text).to(torch_device, torch.bfloat16)
predictions = model.generate(**inputs)
self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud")
def test_vqa_model_batched(self):
model_id = "google/pix2struct-ai2d-base"
image_urls = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo-2.png",
]
images = [Image.open(requests.get(image_url, stream=True).raw) for image_url in image_urls]
texts = [
"What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud",
"What is the producer in the diagram? (1) Phytoplankton (2) Zooplankton (3) Large fish (4) Small fish",
]
model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(
torch_device
)
processor = Pix2StructProcessor.from_pretrained(model_id)
inputs = processor(images=images, return_tensors="pt", text=texts).to(torch_device, torch.bfloat16)
predictions = model.generate(**inputs)
self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud")
self.assertEqual(processor.decode(predictions[1], skip_special_tokens=True), "Phytoplankton")
|