File size: 34,435 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Pix2Struct model. """

import copy
import inspect
import os
import tempfile
import unittest

import numpy as np
import requests

from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import (
        Pix2StructForConditionalGeneration,
        Pix2StructProcessor,
        Pix2StructTextModel,
        Pix2StructVisionModel,
    )
    from transformers.models.pix2struct.modeling_pix2struct import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
    is_torch_greater_or_equal_than_1_11 = False


if is_vision_available():
    from PIL import Image


class Pix2StructVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=12,
        patch_embed_hidden_size=12,
        projection_dim=32,
        max_patches=64,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=1e-10,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_embed_hidden_size = patch_embed_hidden_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.max_patches = max_patches
        self.seq_length = self.max_patches
        self.patch_proj_dim = ((patch_size**2) * num_channels) + 2

        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        flattened_patches = floats_tensor([self.batch_size, self.max_patches, self.patch_proj_dim])
        config = self.get_config()

        return config, flattened_patches

    def get_config(self):
        return Pix2StructVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
            patch_embed_hidden_size=self.patch_embed_hidden_size,
        )

    def create_and_check_model(self, config, flattened_patches):
        model = Pix2StructVisionModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(flattened_patches)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, flattened_patches = config_and_inputs
        inputs_dict = {
            "flattened_patches": flattened_patches,
            "attention_mask": torch.randint(0, 2, (self.batch_size, self.max_patches)),
        }
        return config, inputs_dict


@require_torch
class Pix2StructVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Pix2Struct does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (Pix2StructVisionModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = Pix2StructVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=Pix2StructVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="Pix2StructVision does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["flattened_patches"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
    def test_training(self):
        pass

    @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = Pix2StructVisionModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


class Pix2StructTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=12,
        projection_dim=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        bos_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.d_kv = hidden_size // num_attention_heads
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return Pix2StructTextConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            projection_dim=self.projection_dim,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            bos_token_id=self.bos_token_id,
            d_kv=self.d_kv,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = Pix2StructTextModel(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class Pix2StructTextModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (Pix2StructTextModel,) if is_torch_available() else ()
    fx_compatible = False
    test_pruning = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = Pix2StructTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Pix2StructTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
    def test_training(self):
        pass

    @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="Pix2Struct does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING")
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = Pix2StructTextModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


class Pix2StructModelTester:
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

        self.parent = parent
        self.text_model_tester = Pix2StructTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = Pix2StructVisionModelTester(parent, **vision_kwargs)
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, flattened_patches = self.vision_model_tester.prepare_config_and_inputs()

        config = self.get_config(text_config, vision_config)

        return config, input_ids, attention_mask, flattened_patches

    def get_config(self, text_config, vision_config):
        return Pix2StructConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, decoder_attention_mask, flattened_patches = config_and_inputs

        attention_mask = (flattened_patches.sum(dim=-1) != 0).float()

        inputs_dict = {
            "decoder_input_ids": input_ids,
            "labels": input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "flattened_patches": flattened_patches,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-to-text": Pix2StructForConditionalGeneration} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = True
    test_attention_outputs = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = Pix2StructModelTester(self)

    def test_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config).to(torch_device)

            output = model(**input_dict)
            self.assertEqual(
                output[1].shape,
                (
                    self.model_tester.vision_model_tester.batch_size,
                    self.model_tester.text_model_tester.seq_length,
                    self.model_tester.text_model_tester.vocab_size,
                ),
            )

    @unittest.skip(reason="Hidden_states is tested in individual model tests")
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Retain_grad is tested in individual model tests")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    @unittest.skip(reason="Pix2StructModel does not have input/output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "flattened_patches",
                "attention_mask",
                "decoder_input_ids",
                "decoder_attention_mask",
                "head_mask",
                "decoder_head_mask",
                "cross_attn_head_mask",
                "encoder_outputs",
                "past_key_values",
                "labels",
                "decoder_inputs_embeds",
                "use_cache",
            ]

            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes[:-1]:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

            # hardcode labels to be the same as input_ids
            inputs["labels"] = inputs["input_ids"]

            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes[:-1]:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

            # hardcode labels to be the same as input_ids
            inputs["labels"] = inputs["input_ids"]

            loss = model(**inputs).loss
            loss.backward()

    # override as the `logit_scale` parameter initilization is different for Pix2Struct
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    # check if `logit_scale` is initilized as per the original implementation
                    if name == "logit_scale":
                        self.assertAlmostEqual(
                            param.data.item(),
                            np.log(1 / 0.07),
                            delta=1e-3,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig`
    def test_resize_tokens_embeddings(self):
        original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.text_config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Decoder input ids should be clamped to the maximum size of the vocabulary
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig`
    def test_resize_embeddings_untied(self):
        original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.text_config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Decoder input ids should be clamped to the maximum size of the vocabulary
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

    @unittest.skip(reason="Pix2Struct doesn't use tied weights")
    def test_tied_model_weights_key_ignore(self):
        pass

    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                flattened_patches = inputs_dict["flattened_patches"]  # Pix2Struct needs flattened_patches
                traced_model = torch.jit.trace(model, (input_ids, flattened_patches))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save Pix2StructConfig and check if we can load Pix2StructVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = Pix2StructVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save Pix2StructConfig and check if we can load Pix2StructTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())


# We will verify our results on an image of a stop sign
def prepare_img():
    url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@unittest.skipIf(
    not is_torch_greater_or_equal_than_1_11,
    reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.",
)
@require_vision
@require_torch
@slow
class Pix2StructIntegrationTest(unittest.TestCase):
    def test_inference_image_captioning(self):
        model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
        processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
        image = prepare_img()

        # image only
        inputs = processor(images=image, return_tensors="pt").to(torch_device)

        predictions = model.generate(**inputs)

        self.assertEqual(
            processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner."
        )

    def test_batched_inference_image_captioning(self):
        model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
        processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
        image_1 = prepare_img()

        second_url = (
            "https://www.connollycove.com/wp-content/uploads/2019/06/temple-bar-dublin-world-famous-irish-pub.jpg"
        )
        image_2 = Image.open(requests.get(second_url, stream=True).raw)

        # image only
        inputs = processor(images=[image_1, image_2], return_tensors="pt").to(torch_device)

        predictions = model.generate(**inputs)

        self.assertEqual(
            processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner."
        )

        self.assertEqual(
            processor.decode(predictions[1], skip_special_tokens=True),
            "A row of books including The Temple Bar and Guiness.",
        )

    def test_batched_inference_image_captioning_conditioned(self):
        model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device)
        processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
        image_1 = prepare_img()

        second_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg"
        image_2 = Image.open(requests.get(second_url, stream=True).raw)
        texts = ["A picture of", "An photography of"]

        # image only
        inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", add_special_tokens=False).to(
            torch_device
        )

        predictions = model.generate(**inputs)

        self.assertEqual(
            processor.decode(predictions[0], skip_special_tokens=True),
            "A picture of a stop sign with a red stop sign",
        )

        self.assertEqual(
            processor.decode(predictions[1], skip_special_tokens=True),
            "An photography of the Temple Bar and other places in the city.",
        )

    def test_vqa_model(self):
        model_id = "google/pix2struct-ai2d-base"

        image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(image_url, stream=True).raw)

        model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(
            torch_device
        )
        processor = Pix2StructProcessor.from_pretrained(model_id)

        # image only
        text = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"

        inputs = processor(images=image, return_tensors="pt", text=text).to(torch_device, torch.bfloat16)

        predictions = model.generate(**inputs)
        self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud")

    def test_vqa_model_batched(self):
        model_id = "google/pix2struct-ai2d-base"

        image_urls = [
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg",
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo-2.png",
        ]

        images = [Image.open(requests.get(image_url, stream=True).raw) for image_url in image_urls]

        texts = [
            "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud",
            "What is the producer in the diagram? (1) Phytoplankton (2) Zooplankton (3) Large fish (4) Small fish",
        ]

        model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(
            torch_device
        )
        processor = Pix2StructProcessor.from_pretrained(model_id)

        inputs = processor(images=images, return_tensors="pt", text=texts).to(torch_device, torch.bfloat16)

        predictions = model.generate(**inputs)
        self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud")
        self.assertEqual(processor.decode(predictions[1], skip_special_tokens=True), "Phytoplankton")