File size: 12,458 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Pvt model. """


import inspect
import unittest

from transformers import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import MODEL_MAPPING, PvtConfig, PvtForImageClassification, PvtImageProcessor, PvtModel
    from transformers.models.pvt.modeling_pvt import PVT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image


class PvtConfigTester(ConfigTester):
    def run_common_tests(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "hidden_sizes"))
        self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))


class PvtModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        num_channels=3,
        num_encoder_blocks=4,
        depths=[2, 2, 2, 2],
        sr_ratios=[8, 4, 2, 1],
        hidden_sizes=[16, 32, 64, 128],
        downsampling_rates=[1, 4, 8, 16],
        num_attention_heads=[1, 2, 4, 8],
        is_training=True,
        use_labels=True,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.num_channels = num_channels
        self.num_encoder_blocks = num_encoder_blocks
        self.sr_ratios = sr_ratios
        self.depths = depths
        self.hidden_sizes = hidden_sizes
        self.downsampling_rates = downsampling_rates
        self.num_attention_heads = num_attention_heads
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()
        return config, pixel_values, labels

    def get_config(self):
        return PvtConfig(
            image_size=self.image_size,
            num_channels=self.num_channels,
            num_encoder_blocks=self.num_encoder_blocks,
            depths=self.depths,
            hidden_sizes=self.hidden_sizes,
            num_attention_heads=self.num_attention_heads,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = PvtModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertIsNotNone(result.last_hidden_state)

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = PvtForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # test greyscale images
        config.num_channels = 1
        model = PvtForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
class PvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (PvtModel, PvtForImageClassification) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": PvtModel, "image-classification": PvtForImageClassification}
        if is_torch_available()
        else {}
    )

    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_torchscript = False
    has_attentions = False

    def setUp(self):
        self.model_tester = PvtModelTester(self)
        self.config_tester = PvtConfigTester(self, config_class=PvtConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip("Pvt does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("Pvt does not have get_input_embeddings method and get_output_embeddings methods")
    def test_model_common_attributes(self):
        pass

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            for name, param in model.named_parameters():
                self.assertTrue(
                    -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                    msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = sum(self.model_tester.depths) + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.batch_size,
                    (self.model_tester.image_size // 4) ** 2,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in get_values(MODEL_MAPPING):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    @slow
    def test_model_from_pretrained(self):
        for model_name in PVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = PvtModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
class PvtModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_image_classification(self):
        # only resize + normalize
        image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
        model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval()

        image = prepare_img()
        encoded_inputs = image_processor(images=image, return_tensors="pt")
        pixel_values = encoded_inputs.pixel_values.to(torch_device)

        with torch.no_grad():
            outputs = model(pixel_values)

        expected_shape = torch.Size((1, model.config.num_labels))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.4192, -1.9158, -0.9702]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_model(self):
        model = PvtModel.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval()

        image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values)

        # verify the logits
        expected_shape = torch.Size((1, 50, 512))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-0.3086, 1.0402, 1.1816], [-0.2880, 0.5781, 0.6124], [0.1480, 0.6129, -0.0590]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))

    @slow
    @require_accelerate
    @require_torch_gpu
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224", torch_dtype=torch.float16)
        model.to(torch_device)
        image_processor = PvtImageProcessor(size=224)

        image = prepare_img()
        inputs = image_processor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device, dtype=torch.float16)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)