File size: 17,687 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest
from unittest.util import safe_repr

from transformers import AutoTokenizer, RwkvConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        RWKV_PRETRAINED_MODEL_ARCHIVE_LIST,
        RwkvForCausalLM,
        RwkvModel,
    )
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
else:
    is_torch_greater_or_equal_than_2_0 = False


class RwkvModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=False,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def get_large_model_config(self):
        return RwkvConfig.from_pretrained("sgugger/rwkv-4-pile-7b")

    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )

        return (
            config,
            input_ids,
            input_mask,
            None,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        return RwkvConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            intermediate_size=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_rwkv_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        config.output_hidden_states = True
        model = RwkvModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)

    def create_and_check_causl_lm(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = RwkvForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_state_equivalency(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = RwkvModel(config=config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)
        output_whole = outputs.last_hidden_state

        outputs = model(input_ids[:, :2])
        output_one = outputs.last_hidden_state

        # Using the state computed on the first inputs, we will get the same output
        outputs = model(input_ids[:, 2:], state=outputs.state)
        output_two = outputs.last_hidden_state

        self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))

    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
        model = RwkvForCausalLM(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids}

        return config, inputs_dict


@unittest.skipIf(
    not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
)
@require_torch
class RwkvModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (RwkvModel, RwkvForCausalLM) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": RwkvModel, "text-generation": RwkvForCausalLM} if is_torch_available() else {}
    )
    # all_generative_model_classes = (RwkvForCausalLM,) if is_torch_available() else ()
    fx_compatible = False
    test_missing_keys = False
    test_model_parallel = False
    test_pruning = False
    test_head_masking = False  # Rwkv does not support head masking

    def setUp(self):
        self.model_tester = RwkvModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=RwkvConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
        )

    def assertInterval(self, member, container, msg=None):
        r"""
        Simple utility function to check if a member is inside an interval.
        """
        if isinstance(member, torch.Tensor):
            max_value, min_value = member.max().item(), member.min().item()
        elif isinstance(member, list) or isinstance(member, tuple):
            max_value, min_value = max(member), min(member)

        if not isinstance(container, list):
            raise TypeError("container should be a list or tuple")
        elif len(container) != 2:
            raise ValueError("container should have 2 elements")

        expected_min, expected_max = container

        is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)

        if not is_inside_interval:
            standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container))
            self.fail(self._formatMessage(msg, standardMsg))

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_rwkv_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_rwkv_model(*config_and_inputs)

    def test_rwkv_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_causl_lm(*config_and_inputs)

    def test_state_equivalency(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_state_equivalency(*config_and_inputs)

    def test_initialization(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            for name, param in model.named_parameters():
                if "time_decay" in name:
                    if param.requires_grad:
                        self.assertTrue(param.data.max().item() == 3.0)
                        self.assertTrue(param.data.min().item() == -5.0)
                elif "time_first" in name:
                    if param.requires_grad:
                        # check if it's a ones like
                        self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
                elif any(x in name for x in ["time_mix_key", "time_mix_receptance"]):
                    if param.requires_grad:
                        self.assertInterval(
                            param.data,
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                elif "time_mix_value" in name:
                    if param.requires_grad:
                        self.assertInterval(
                            param.data,
                            [0.0, 1.3],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    def test_attention_outputs(self):
        r"""
        Overriding the test_attention_outputs test as the attention outputs of Rwkv are different from other models
        it has a shape `batch_size, seq_len, hidden_size`.
        """
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = self._prepare_for_class(inputs_dict, model_class)
            batch_size = inputs["input_ids"].shape[0]
            with torch.no_grad():
                outputs = model(**inputs)
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = self._prepare_for_class(inputs_dict, model_class)
            batch_size = inputs["input_ids"].shape[0]
            with torch.no_grad():
                outputs = model(**inputs)
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [batch_size, seq_len, config.hidden_size],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = self._prepare_for_class(inputs_dict, model_class)
            batch_size = inputs["input_ids"].shape[0]
            with torch.no_grad():
                outputs = model(**inputs)

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [batch_size, seq_len, config.hidden_size],
            )

    @slow
    def test_model_from_pretrained(self):
        for model_name in RWKV_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = RwkvModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@unittest.skipIf(
    not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
)
@slow
class RWKVIntegrationTests(unittest.TestCase):
    def setUp(self):
        self.model_id = "RWKV/rwkv-4-169m-pile"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)

    def test_simple_generate(self):
        expected_output = "Hello my name is Jasmine and I am a newbie to the"
        model = RwkvForCausalLM.from_pretrained(self.model_id).to(torch_device)

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
        output = model.generate(input_ids, max_new_tokens=10)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)

    def test_simple_generate_bf16(self):
        expected_output = "Hello my name is Jasmine and I am a newbie to the"

        input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device)
        model = RwkvForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)

        output = model.generate(input_ids, max_new_tokens=10)
        output_sentence = self.tokenizer.decode(output[0].tolist())

        self.assertEqual(output_sentence, expected_output)