File size: 45,907 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import unittest

import numpy as np
import pandas as pd

from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    TapasConfig,
    is_torch_available,
)
from transformers.models.auto import get_values
from transformers.testing_utils import require_tensorflow_probability, require_torch, slow, torch_device
from transformers.utils import cached_property

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        TapasForMaskedLM,
        TapasForQuestionAnswering,
        TapasForSequenceClassification,
        TapasModel,
        TapasTokenizer,
    )
    from transformers.models.tapas.modeling_tapas import (
        IndexMap,
        ProductIndexMap,
        flatten,
        gather,
        range_index_map,
        reduce_max,
        reduce_mean,
        reduce_sum,
    )
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
    is_torch_greater_or_equal_than_1_12 = False


class TapasModelTester:
    """You can also import this e.g from .test_modeling_tapas import TapasModelTester"""

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        max_position_embeddings=512,
        type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
        type_sequence_label_size=2,
        positive_weight=10.0,
        num_aggregation_labels=4,
        num_labels=2,
        aggregation_loss_importance=0.8,
        use_answer_as_supervision=True,
        answer_loss_importance=0.001,
        use_normalized_answer_loss=False,
        huber_loss_delta=25.0,
        temperature=1.0,
        agg_temperature=1.0,
        use_gumbel_for_cells=False,
        use_gumbel_for_agg=False,
        average_approximation_function="ratio",
        cell_selection_preference=0.5,
        answer_loss_cutoff=100,
        max_num_rows=64,
        max_num_columns=32,
        average_logits_per_cell=True,
        select_one_column=True,
        allow_empty_column_selection=False,
        init_cell_selection_weights_to_zero=True,
        reset_position_index_per_cell=True,
        disable_per_token_loss=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_sizes = type_vocab_sizes
        self.type_sequence_label_size = type_sequence_label_size
        self.positive_weight = positive_weight
        self.num_aggregation_labels = num_aggregation_labels
        self.num_labels = num_labels
        self.aggregation_loss_importance = aggregation_loss_importance
        self.use_answer_as_supervision = use_answer_as_supervision
        self.answer_loss_importance = answer_loss_importance
        self.use_normalized_answer_loss = use_normalized_answer_loss
        self.huber_loss_delta = huber_loss_delta
        self.temperature = temperature
        self.agg_temperature = agg_temperature
        self.use_gumbel_for_cells = use_gumbel_for_cells
        self.use_gumbel_for_agg = use_gumbel_for_agg
        self.average_approximation_function = average_approximation_function
        self.cell_selection_preference = cell_selection_preference
        self.answer_loss_cutoff = answer_loss_cutoff
        self.max_num_rows = max_num_rows
        self.max_num_columns = max_num_columns
        self.average_logits_per_cell = average_logits_per_cell
        self.select_one_column = select_one_column
        self.allow_empty_column_selection = allow_empty_column_selection
        self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
        self.reset_position_index_per_cell = reset_position_index_per_cell
        self.disable_per_token_loss = disable_per_token_loss
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).to(torch_device)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length]).to(torch_device)

        token_type_ids = []
        for type_vocab_size in self.type_vocab_sizes:
            token_type_ids.append(ids_tensor(shape=[self.batch_size, self.seq_length], vocab_size=type_vocab_size))
        token_type_ids = torch.stack(token_type_ids, dim=2).to(torch_device)

        sequence_labels = None
        token_labels = None
        labels = None
        numeric_values = None
        numeric_values_scale = None
        float_answer = None
        aggregation_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size).to(torch_device)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels).to(torch_device)
            labels = ids_tensor([self.batch_size, self.seq_length], vocab_size=2).to(torch_device)
            numeric_values = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
            numeric_values_scale = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
            float_answer = floats_tensor([self.batch_size]).to(torch_device)
            aggregation_labels = ids_tensor([self.batch_size], self.num_aggregation_labels).to(torch_device)

        config = self.get_config()

        return (
            config,
            input_ids,
            input_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            labels,
            numeric_values,
            numeric_values_scale,
            float_answer,
            aggregation_labels,
        )

    def get_config(self):
        return TapasConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_sizes=self.type_vocab_sizes,
            initializer_range=self.initializer_range,
            positive_weight=self.positive_weight,
            num_aggregation_labels=self.num_aggregation_labels,
            num_labels=self.num_labels,
            aggregation_loss_importance=self.aggregation_loss_importance,
            use_answer_as_supervision=self.use_answer_as_supervision,
            answer_loss_importance=self.answer_loss_importance,
            use_normalized_answer_loss=self.use_normalized_answer_loss,
            huber_loss_delta=self.huber_loss_delta,
            temperature=self.temperature,
            agg_temperature=self.agg_temperature,
            use_gumbel_for_cells=self.use_gumbel_for_cells,
            use_gumbel_for_agg=self.use_gumbel_for_agg,
            average_approximation_function=self.average_approximation_function,
            cell_selection_preference=self.cell_selection_preference,
            answer_loss_cutoff=self.answer_loss_cutoff,
            max_num_rows=self.max_num_rows,
            max_num_columns=self.max_num_columns,
            average_logits_per_cell=self.average_logits_per_cell,
            select_one_column=self.select_one_column,
            allow_empty_column_selection=self.allow_empty_column_selection,
            init_cell_selection_weights_to_zero=self.init_cell_selection_weights_to_zero,
            reset_position_index_per_cell=self.reset_position_index_per_cell,
            disable_per_token_loss=self.disable_per_token_loss,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        input_mask,
        token_type_ids,
        sequence_labels,
        token_labels,
        labels,
        numeric_values,
        numeric_values_scale,
        float_answer,
        aggregation_labels,
    ):
        model = TapasModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_masked_lm(
        self,
        config,
        input_ids,
        input_mask,
        token_type_ids,
        sequence_labels,
        token_labels,
        labels,
        numeric_values,
        numeric_values_scale,
        float_answer,
        aggregation_labels,
    ):
        model = TapasForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_question_answering(
        self,
        config,
        input_ids,
        input_mask,
        token_type_ids,
        sequence_labels,
        token_labels,
        labels,
        numeric_values,
        numeric_values_scale,
        float_answer,
        aggregation_labels,
    ):
        # inference: without aggregation head (SQA). Model only returns logits
        sqa_config = copy.copy(config)
        sqa_config.num_aggregation_labels = 0
        sqa_config.use_answer_as_supervision = False
        model = TapasForQuestionAnswering(config=sqa_config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))

        # inference: with aggregation head (WTQ, WikiSQL-supervised). Model returns logits and aggregation logits
        model = TapasForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))

        # training: can happen in 3 main ways
        # case 1: conversational (SQA)
        model = TapasForQuestionAnswering(config=sqa_config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=labels,
        )
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))

        # case 2: weak supervision for aggregation (WTQ)
        model = TapasForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=labels,
            numeric_values=numeric_values,
            numeric_values_scale=numeric_values_scale,
            float_answer=float_answer,
        )
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))

        # case 3: strong supervision for aggregation (WikiSQL-supervised)
        wikisql_config = copy.copy(config)
        wikisql_config.use_answer_as_supervision = False
        model = TapasForQuestionAnswering(config=wikisql_config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=labels,
            aggregation_labels=aggregation_labels,
        )
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))

    def create_and_check_for_sequence_classification(
        self,
        config,
        input_ids,
        input_mask,
        token_type_ids,
        sequence_labels,
        token_labels,
        labels,
        numeric_values,
        numeric_values_scale,
        float_answer,
        aggregation_labels,
    ):
        config.num_labels = self.num_labels
        model = TapasForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            labels,
            numeric_values,
            numeric_values_scale,
            float_answer,
            aggregation_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            TapasModel,
            TapasForMaskedLM,
            TapasForQuestionAnswering,
            TapasForSequenceClassification,
        )
        if is_torch_available()
        else None
    )
    pipeline_model_mapping = (
        {
            "feature-extraction": TapasModel,
            "fill-mask": TapasForMaskedLM,
            "table-question-answering": TapasForQuestionAnswering,
            "text-classification": TapasForSequenceClassification,
            "zero-shot": TapasForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_pruning = False
    test_resize_embeddings = True
    test_head_masking = False

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
            inputs_dict = {
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
                if isinstance(v, torch.Tensor) and v.ndim > 1
                else v
                for k, v in inputs_dict.items()
            }

        if return_labels:
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in get_values(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING):
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["aggregation_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["numeric_values"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length),
                    dtype=torch.float,
                    device=torch_device,
                )
                inputs_dict["numeric_values_scale"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length),
                    dtype=torch.float,
                    device=torch_device,
                )
                inputs_dict["float_answer"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.float, device=torch_device
                )
            elif model_class in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
        return inputs_dict

    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

    def setUp(self):
        self.model_tester = TapasModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TapasConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    @require_tensorflow_probability
    def test_pt_tf_model_equivalence(self):
        super().test_pt_tf_model_equivalence()


def prepare_tapas_single_inputs_for_inference():
    # Here we prepare a single table-question pair to test TAPAS inference on:
    data = {
        "Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
        "Age": ["33", "35"],
    }
    queries = "Which footballer is 33 years old?"
    table = pd.DataFrame.from_dict(data)

    return table, queries


def prepare_tapas_batch_inputs_for_inference():
    # Here we prepare a batch of 2 table-question pairs to test TAPAS inference on:
    data = {
        "Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
        "Age": ["33", "35"],
        "Number of goals": ["712", "750"],
    }
    queries = ["Which footballer is 33 years old?", "How many goals does Ronaldo have?"]
    table = pd.DataFrame.from_dict(data)

    return table, queries


def prepare_tapas_batch_inputs_for_training():
    # Here we prepare a DIFFERENT batch of 2 table-question pairs to test TAPAS training on:
    data = {
        "Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
        "Age": ["33", "35"],
        "Number of goals": ["712", "750"],
    }
    queries = ["Which footballer is 33 years old?", "What's the total number of goals?"]
    table = pd.DataFrame.from_dict(data)

    answer_coordinates = [[(0, 0)], [(0, 2), (1, 2)]]
    answer_text = [["Lionel Messi"], ["1462"]]
    float_answer = [float("NaN"), float("1462")]

    return table, queries, answer_coordinates, answer_text, float_answer


@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_tokenizer(self):
        return TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")

    @slow
    def test_inference_no_head(self):
        # ideally we want to test this with the weights of tapas_inter_masklm_base_reset,
        # but since it's not straightforward to do this with the TF 1 implementation, we test it with
        # the weights of the WTQ base model (i.e. tapas_wtq_wikisql_sqa_inter_masklm_base_reset)
        model = TapasModel.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)

        tokenizer = self.default_tokenizer
        table, queries = prepare_tapas_single_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
        inputs = {k: v.to(torch_device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        # test the sequence output
        expected_slice = torch.tensor(
            [
                [
                    [-0.141581565, -0.599805772, 0.747186482],
                    [-0.143664181, -0.602008104, 0.749218345],
                    [-0.15169853, -0.603363097, 0.741370678],
                ]
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(outputs.last_hidden_state[:, :3, :3], expected_slice, atol=0.0005))

        # test the pooled output
        expected_slice = torch.tensor([[0.987518311, -0.970520139, -0.994303405]], device=torch_device)

        self.assertTrue(torch.allclose(outputs.pooler_output[:, :3], expected_slice, atol=0.0005))

    @unittest.skip(reason="Model not available yet")
    def test_inference_masked_lm(self):
        pass

    # TapasForQuestionAnswering has 3 possible ways of being fine-tuned:
    # - conversational set-up (SQA)
    # - weak supervision for aggregation (WTQ, WikiSQL)
    # - strong supervision for aggregation (WikiSQL-supervised)
    # We test all of them:
    @slow
    def test_inference_question_answering_head_conversational(self):
        # note that google/tapas-base-finetuned-sqa should correspond to tapas_sqa_inter_masklm_base_reset
        model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa").to(torch_device)

        tokenizer = self.default_tokenizer
        table, queries = prepare_tapas_single_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
        inputs = {k: v.to(torch_device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        # test the logits
        logits = outputs.logits
        expected_shape = torch.Size((1, 21))
        self.assertEqual(logits.shape, expected_shape)

        expected_tensor = torch.tensor(
            [
                [
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -9997.22461,
                    -16.2628059,
                    -10004.082,
                    15.4330549,
                    15.4330549,
                    15.4330549,
                    -9990.42,
                    -16.3270779,
                    -16.3270779,
                    -16.3270779,
                    -16.3270779,
                    -16.3270779,
                    -10004.8506,
                ]
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.015))

    @slow
    def test_inference_question_answering_head_conversational_absolute_embeddings(self):
        # note that google/tapas-small-finetuned-sqa should correspond to tapas_sqa_inter_masklm_small_reset
        # however here we test the version with absolute position embeddings
        model = TapasForQuestionAnswering.from_pretrained("google/tapas-small-finetuned-sqa", revision="no_reset").to(
            torch_device
        )

        tokenizer = self.default_tokenizer
        table, queries = prepare_tapas_single_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
        inputs = {k: v.to(torch_device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        # test the logits
        logits = outputs.logits
        expected_shape = torch.Size((1, 21))
        self.assertEqual(logits.shape, expected_shape)

        expected_tensor = torch.tensor(
            [
                [
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -10014.7793,
                    -18.8419304,
                    -10018.0391,
                    17.7848816,
                    17.7848816,
                    17.7848816,
                    -9981.02832,
                    -16.4005489,
                    -16.4005489,
                    -16.4005489,
                    -16.4005489,
                    -16.4005489,
                    -10013.4736,
                ]
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.01))

    @slow
    def test_inference_question_answering_head_weak_supervision(self):
        # note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
        model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)

        tokenizer = self.default_tokenizer
        # let's test on a batch
        table, queries = prepare_tapas_batch_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
        inputs_on_device = {k: v.to(torch_device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = model(**inputs_on_device)
        # test the logits
        logits = outputs.logits
        expected_shape = torch.Size((2, 28))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [
                [-160.375504, -160.375504, -160.375504, -10072.3965, -10070.9414, -10094.9736],
                [-9861.6123, -9861.6123, -9861.6123, -9861.6123, -9891.01172, 146.600677],
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits[:, -6:], expected_slice, atol=0.4))

        # test the aggregation logits
        logits_aggregation = outputs.logits_aggregation
        expected_shape = torch.Size((2, 4))
        self.assertEqual(logits_aggregation.shape, expected_shape)
        expected_tensor = torch.tensor(
            [[18.8545208, -9.76614857, -6.3128891, -2.93525243], [-4.05782509, 40.0351, -5.35329962, 23.3978653]],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.001))

        # test the predicted answer coordinates and aggregation indices
        EXPECTED_PREDICTED_ANSWER_COORDINATES = [[(0, 0)], [(1, 2)]]
        EXPECTED_PREDICTED_AGGREGATION_INDICES = [0, 1]

        predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
            inputs, outputs.logits.detach().cpu(), outputs.logits_aggregation.detach().cpu()
        )

        self.assertEqual(EXPECTED_PREDICTED_ANSWER_COORDINATES, predicted_answer_coordinates)
        self.assertEqual(EXPECTED_PREDICTED_AGGREGATION_INDICES, predicted_aggregation_indices)

    @slow
    def test_training_question_answering_head_weak_supervision(self):
        # note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
        model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
        model.to(torch_device)
        # normally we should put the model in training mode but it's a pain to do this with the TF 1 implementation

        tokenizer = self.default_tokenizer
        # let's test on a batch
        table, queries, answer_coordinates, answer_text, float_answer = prepare_tapas_batch_inputs_for_training()
        inputs = tokenizer(
            table=table,
            queries=queries,
            answer_coordinates=answer_coordinates,
            answer_text=answer_text,
            padding="longest",
            return_tensors="pt",
        )

        # prepare data (created by the tokenizer) and move to torch_device
        input_ids = inputs["input_ids"].to(torch_device)
        attention_mask = inputs["attention_mask"].to(torch_device)
        token_type_ids = inputs["token_type_ids"].to(torch_device)
        labels = inputs["labels"].to(torch_device)
        numeric_values = inputs["numeric_values"].to(torch_device)
        numeric_values_scale = inputs["numeric_values_scale"].to(torch_device)

        # the answer should be prepared by the user
        float_answer = torch.FloatTensor(float_answer).to(torch_device)

        # forward pass to get loss + logits:
        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                labels=labels,
                numeric_values=numeric_values,
                numeric_values_scale=numeric_values_scale,
                float_answer=float_answer,
            )

        # test the loss
        loss = outputs.loss
        expected_loss = torch.tensor(3.3527612686157227e-08, device=torch_device)
        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-6))

        # test the logits on the first example
        logits = outputs.logits
        expected_shape = torch.Size((2, 29))
        self.assertEqual(logits.shape, expected_shape)
        expected_slice = torch.tensor(
            [
                -160.0156,
                -160.0156,
                -160.0156,
                -160.0156,
                -160.0156,
                -10072.2266,
                -10070.8896,
                -10092.6006,
                -10092.6006,
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits[0, -9:], expected_slice, atol=1e-6))

        # test the aggregation logits on the second example
        logits_aggregation = outputs.logits_aggregation
        expected_shape = torch.Size((2, 4))
        self.assertEqual(logits_aggregation.shape, expected_shape)
        expected_slice = torch.tensor([-4.0538, 40.0304, -5.3554, 23.3965], device=torch_device)

        self.assertTrue(torch.allclose(logits_aggregation[1, -4:], expected_slice, atol=1e-4))

    @slow
    def test_inference_question_answering_head_strong_supervision(self):
        # note that google/tapas-base-finetuned-wikisql-supervised should correspond to tapas_wikisql_sqa_inter_masklm_base_reset
        model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wikisql-supervised").to(
            torch_device
        )

        tokenizer = self.default_tokenizer
        table, queries = prepare_tapas_single_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
        inputs = {k: v.to(torch_device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)
        # test the logits
        logits = outputs.logits
        expected_shape = torch.Size((1, 21))
        self.assertEqual(logits.shape, expected_shape)
        expected_tensor = torch.tensor(
            [
                [
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -10011.1084,
                    -18.6185989,
                    -10008.7969,
                    17.6355762,
                    17.6355762,
                    17.6355762,
                    -10002.4404,
                    -18.7111301,
                    -18.7111301,
                    -18.7111301,
                    -18.7111301,
                    -18.7111301,
                    -10007.0977,
                ]
            ],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.02))

        # test the aggregation logits
        logits_aggregation = outputs.logits_aggregation
        expected_shape = torch.Size((1, 4))
        self.assertEqual(logits_aggregation.shape, expected_shape)
        expected_tensor = torch.tensor(
            [[16.5659733, -3.06624889, -2.34152961, -0.970244825]], device=torch_device
        )  # PyTorch model outputs [[16.5679, -3.0668, -2.3442, -0.9674]]

        self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.003))

    @slow
    def test_inference_classification_head(self):
        # note that google/tapas-base-finetuned-tabfact should correspond to tapas_tabfact_inter_masklm_base_reset
        model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact").to(torch_device)

        tokenizer = self.default_tokenizer
        table, queries = prepare_tapas_single_inputs_for_inference()
        inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
        inputs = {k: v.to(torch_device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = model(**inputs)

        # test the classification logits
        logits = outputs.logits
        expected_shape = torch.Size((1, 2))
        self.assertEqual(logits.shape, expected_shape)
        expected_tensor = torch.tensor(
            [[0.795137286, 9.5572]], device=torch_device
        )  # Note that the PyTorch model outputs [[0.8057, 9.5281]]

        self.assertTrue(torch.allclose(outputs.logits, expected_tensor, atol=0.05))


# Below: tests for Tapas utilities which are defined in modeling_tapas.py.
# These are based on segmented_tensor_test.py of the original implementation.
# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasUtilitiesTest(unittest.TestCase):
    def _prepare_tables(self):
        """Prepares two tables, both with three distinct rows.
        The first table has two columns:
        1.0, 2.0 | 3.0
        2.0, 0.0 | 1.0
        1.0, 3.0 | 4.0
        The second table has three columns:
        1.0 | 2.0 | 3.0
        2.0 | 0.0 | 1.0
        1.0 | 3.0 | 4.0
        Returns:
        SegmentedTensors with the tables.
        """
        values = torch.tensor(
            [
                [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
                [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
            ]
        )
        row_index = IndexMap(
            indices=torch.tensor(
                [
                    [[0, 0, 0], [1, 1, 1], [2, 2, 2]],
                    [[0, 0, 0], [1, 1, 1], [2, 2, 2]],
                ]
            ),
            num_segments=3,
            batch_dims=1,
        )
        col_index = IndexMap(
            indices=torch.tensor(
                [
                    [[0, 0, 1], [0, 0, 1], [0, 0, 1]],
                    [[0, 1, 2], [0, 1, 2], [0, 1, 2]],
                ]
            ),
            num_segments=3,
            batch_dims=1,
        )
        return values, row_index, col_index

    def test_product_index(self):
        _, row_index, col_index = self._prepare_tables()
        cell_index = ProductIndexMap(row_index, col_index)
        row_index_proj = cell_index.project_outer(cell_index)
        col_index_proj = cell_index.project_inner(cell_index)

        ind = cell_index.indices
        self.assertEqual(cell_index.num_segments, 9)

        # Projections should give back the original indices.
        # we use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(row_index.indices.numpy(), row_index_proj.indices.numpy())
        self.assertEqual(row_index.num_segments, row_index_proj.num_segments)
        self.assertEqual(row_index.batch_dims, row_index_proj.batch_dims)
        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(col_index.indices.numpy(), col_index_proj.indices.numpy())
        self.assertEqual(col_index.batch_dims, col_index_proj.batch_dims)

        # The first and second "column" are identified in the first table.
        for i in range(3):
            self.assertEqual(ind[0, i, 0], ind[0, i, 1])
            self.assertNotEqual(ind[0, i, 0], ind[0, i, 2])

        # All rows are distinct in the first table.
        for i, i_2 in zip(range(3), range(3)):
            for j, j_2 in zip(range(3), range(3)):
                if i != i_2 and j != j_2:
                    self.assertNotEqual(ind[0, i, j], ind[0, i_2, j_2])

        # All cells are distinct in the second table.
        for i, i_2 in zip(range(3), range(3)):
            for j, j_2 in zip(range(3), range(3)):
                if i != i_2 or j != j_2:
                    self.assertNotEqual(ind[1, i, j], ind[1, i_2, j_2])

    def test_flatten(self):
        _, row_index, col_index = self._prepare_tables()
        row_index_flat = flatten(row_index)
        col_index_flat = flatten(col_index)

        shape = [3, 4, 5]
        batched_index = IndexMap(indices=torch.zeros(shape).type(torch.LongTensor), num_segments=1, batch_dims=3)
        batched_index_flat = flatten(batched_index)

        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(
            row_index_flat.indices.numpy(), [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
        )
        np.testing.assert_array_equal(
            col_index_flat.indices.numpy(), [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 4, 5, 3, 4, 5, 3, 4, 5]
        )
        self.assertEqual(batched_index_flat.num_segments.numpy(), np.prod(shape))
        np.testing.assert_array_equal(batched_index_flat.indices.numpy(), range(np.prod(shape)))

    def test_range_index_map(self):
        batch_shape = [3, 4]
        num_segments = 5
        index = range_index_map(batch_shape, num_segments)

        self.assertEqual(num_segments, index.num_segments)
        self.assertEqual(2, index.batch_dims)
        indices = index.indices
        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(list(indices.size()), [3, 4, 5])
        for i in range(batch_shape[0]):
            for j in range(batch_shape[1]):
                # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
                np.testing.assert_array_equal(indices[i, j, :].numpy(), range(num_segments))

    def test_reduce_sum(self):
        values, row_index, col_index = self._prepare_tables()
        cell_index = ProductIndexMap(row_index, col_index)
        row_sum, _ = reduce_sum(values, row_index)
        col_sum, _ = reduce_sum(values, col_index)
        cell_sum, _ = reduce_sum(values, cell_index)

        # We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
        np.testing.assert_allclose(row_sum.numpy(), [[6.0, 3.0, 8.0], [6.0, 3.0, 8.0]])
        np.testing.assert_allclose(col_sum.numpy(), [[9.0, 8.0, 0.0], [4.0, 5.0, 8.0]])
        np.testing.assert_allclose(
            cell_sum.numpy(),
            [[3.0, 3.0, 0.0, 2.0, 1.0, 0.0, 4.0, 4.0, 0.0], [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0]],
        )

    def test_reduce_mean(self):
        values, row_index, col_index = self._prepare_tables()
        cell_index = ProductIndexMap(row_index, col_index)
        row_mean, _ = reduce_mean(values, row_index)
        col_mean, _ = reduce_mean(values, col_index)
        cell_mean, _ = reduce_mean(values, cell_index)

        # We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
        np.testing.assert_allclose(
            row_mean.numpy(), [[6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0], [6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0]]
        )
        np.testing.assert_allclose(col_mean.numpy(), [[9.0 / 6.0, 8.0 / 3.0, 0.0], [4.0 / 3.0, 5.0 / 3.0, 8.0 / 3.0]])
        np.testing.assert_allclose(
            cell_mean.numpy(),
            [
                [3.0 / 2.0, 3.0, 0.0, 2.0 / 2.0, 1.0, 0.0, 4.0 / 2.0, 4.0, 0.0],
                [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0],
            ],
        )

    def test_reduce_max(self):
        values = torch.as_tensor([2.0, 1.0, 0.0, 3.0])
        index = IndexMap(indices=torch.as_tensor([0, 1, 0, 1]), num_segments=2)
        maximum, _ = reduce_max(values, index)

        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(maximum.numpy(), [2, 3])

    def test_reduce_sum_vectorized(self):
        values = torch.as_tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]])
        index = IndexMap(indices=torch.as_tensor([[0, 0, 1]]), num_segments=2, batch_dims=0)
        sums, new_index = reduce_sum(values, index)

        # We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
        np.testing.assert_allclose(sums.numpy(), [3.0, 3.0])
        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(new_index.indices.numpy(), [0, 1])
        np.testing.assert_array_equal(new_index.num_segments.numpy(), 2)
        np.testing.assert_array_equal(new_index.batch_dims, 0)

    def test_gather(self):
        values, row_index, col_index = self._prepare_tables()
        cell_index = ProductIndexMap(row_index, col_index)

        # Compute sums and then gather. The result should have the same shape as
        # the original table and each element should contain the sum the values in
        # its cell.
        sums, _ = reduce_sum(values, cell_index)
        cell_sum = gather(sums, cell_index)
        assert cell_sum.size() == values.size()

        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_allclose(
            cell_sum.numpy(),
            [[[3.0, 3.0, 3.0], [2.0, 2.0, 1.0], [4.0, 4.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]],
        )

    def test_gather_vectorized(self):
        values = torch.as_tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
        index = IndexMap(indices=torch.as_tensor([[0, 1], [1, 0]]), num_segments=2, batch_dims=1)
        result = gather(values, index)

        # We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
        np.testing.assert_array_equal(result.numpy(), [[[1, 2], [3, 4]], [[7, 8], [5, 6]]])