Spaces:
Paused
Paused
File size: 45,907 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
import pandas as pd
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TapasConfig,
is_torch_available,
)
from transformers.models.auto import get_values
from transformers.testing_utils import require_tensorflow_probability, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
)
from transformers.models.tapas.modeling_tapas import (
IndexMap,
ProductIndexMap,
flatten,
gather,
range_index_map,
reduce_max,
reduce_mean,
reduce_sum,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
is_torch_greater_or_equal_than_1_12 = False
class TapasModelTester:
"""You can also import this e.g from .test_modeling_tapas import TapasModelTester"""
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_position_embeddings=512,
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
type_sequence_label_size=2,
positive_weight=10.0,
num_aggregation_labels=4,
num_labels=2,
aggregation_loss_importance=0.8,
use_answer_as_supervision=True,
answer_loss_importance=0.001,
use_normalized_answer_loss=False,
huber_loss_delta=25.0,
temperature=1.0,
agg_temperature=1.0,
use_gumbel_for_cells=False,
use_gumbel_for_agg=False,
average_approximation_function="ratio",
cell_selection_preference=0.5,
answer_loss_cutoff=100,
max_num_rows=64,
max_num_columns=32,
average_logits_per_cell=True,
select_one_column=True,
allow_empty_column_selection=False,
init_cell_selection_weights_to_zero=True,
reset_position_index_per_cell=True,
disable_per_token_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.max_position_embeddings = max_position_embeddings
self.type_vocab_sizes = type_vocab_sizes
self.type_sequence_label_size = type_sequence_label_size
self.positive_weight = positive_weight
self.num_aggregation_labels = num_aggregation_labels
self.num_labels = num_labels
self.aggregation_loss_importance = aggregation_loss_importance
self.use_answer_as_supervision = use_answer_as_supervision
self.answer_loss_importance = answer_loss_importance
self.use_normalized_answer_loss = use_normalized_answer_loss
self.huber_loss_delta = huber_loss_delta
self.temperature = temperature
self.agg_temperature = agg_temperature
self.use_gumbel_for_cells = use_gumbel_for_cells
self.use_gumbel_for_agg = use_gumbel_for_agg
self.average_approximation_function = average_approximation_function
self.cell_selection_preference = cell_selection_preference
self.answer_loss_cutoff = answer_loss_cutoff
self.max_num_rows = max_num_rows
self.max_num_columns = max_num_columns
self.average_logits_per_cell = average_logits_per_cell
self.select_one_column = select_one_column
self.allow_empty_column_selection = allow_empty_column_selection
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
self.reset_position_index_per_cell = reset_position_index_per_cell
self.disable_per_token_loss = disable_per_token_loss
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).to(torch_device)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length]).to(torch_device)
token_type_ids = []
for type_vocab_size in self.type_vocab_sizes:
token_type_ids.append(ids_tensor(shape=[self.batch_size, self.seq_length], vocab_size=type_vocab_size))
token_type_ids = torch.stack(token_type_ids, dim=2).to(torch_device)
sequence_labels = None
token_labels = None
labels = None
numeric_values = None
numeric_values_scale = None
float_answer = None
aggregation_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size).to(torch_device)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels).to(torch_device)
labels = ids_tensor([self.batch_size, self.seq_length], vocab_size=2).to(torch_device)
numeric_values = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
numeric_values_scale = floats_tensor([self.batch_size, self.seq_length]).to(torch_device)
float_answer = floats_tensor([self.batch_size]).to(torch_device)
aggregation_labels = ids_tensor([self.batch_size], self.num_aggregation_labels).to(torch_device)
config = self.get_config()
return (
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
)
def get_config(self):
return TapasConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_sizes=self.type_vocab_sizes,
initializer_range=self.initializer_range,
positive_weight=self.positive_weight,
num_aggregation_labels=self.num_aggregation_labels,
num_labels=self.num_labels,
aggregation_loss_importance=self.aggregation_loss_importance,
use_answer_as_supervision=self.use_answer_as_supervision,
answer_loss_importance=self.answer_loss_importance,
use_normalized_answer_loss=self.use_normalized_answer_loss,
huber_loss_delta=self.huber_loss_delta,
temperature=self.temperature,
agg_temperature=self.agg_temperature,
use_gumbel_for_cells=self.use_gumbel_for_cells,
use_gumbel_for_agg=self.use_gumbel_for_agg,
average_approximation_function=self.average_approximation_function,
cell_selection_preference=self.cell_selection_preference,
answer_loss_cutoff=self.answer_loss_cutoff,
max_num_rows=self.max_num_rows,
max_num_columns=self.max_num_columns,
average_logits_per_cell=self.average_logits_per_cell,
select_one_column=self.select_one_column,
allow_empty_column_selection=self.allow_empty_column_selection,
init_cell_selection_weights_to_zero=self.init_cell_selection_weights_to_zero,
reset_position_index_per_cell=self.reset_position_index_per_cell,
disable_per_token_loss=self.disable_per_token_loss,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TapasModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TapasForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
# inference: without aggregation head (SQA). Model only returns logits
sqa_config = copy.copy(config)
sqa_config.num_aggregation_labels = 0
sqa_config.use_answer_as_supervision = False
model = TapasForQuestionAnswering(config=sqa_config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# inference: with aggregation head (WTQ, WikiSQL-supervised). Model returns logits and aggregation logits
model = TapasForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# training: can happen in 3 main ways
# case 1: conversational (SQA)
model = TapasForQuestionAnswering(config=sqa_config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=labels,
)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# case 2: weak supervision for aggregation (WTQ)
model = TapasForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=labels,
numeric_values=numeric_values,
numeric_values_scale=numeric_values_scale,
float_answer=float_answer,
)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# case 3: strong supervision for aggregation (WikiSQL-supervised)
wikisql_config = copy.copy(config)
wikisql_config.use_answer_as_supervision = False
model = TapasForQuestionAnswering(config=wikisql_config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=labels,
aggregation_labels=aggregation_labels,
)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
config.num_labels = self.num_labels
model = TapasForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TapasModel,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
)
if is_torch_available()
else None
)
pipeline_model_mapping = (
{
"feature-extraction": TapasModel,
"fill-mask": TapasForMaskedLM,
"table-question-answering": TapasForQuestionAnswering,
"text-classification": TapasForSequenceClassification,
"zero-shot": TapasForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict = {
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
if isinstance(v, torch.Tensor) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
elif model_class in get_values(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["aggregation_labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["numeric_values"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length),
dtype=torch.float,
device=torch_device,
)
inputs_dict["numeric_values_scale"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length),
dtype=torch.float,
device=torch_device,
)
inputs_dict["float_answer"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.float, device=torch_device
)
elif model_class in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class in [
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(MODEL_FOR_MASKED_LM_MAPPING),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = TapasModelTester(self)
self.config_tester = ConfigTester(self, config_class=TapasConfig, dim=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
@require_tensorflow_probability
def test_pt_tf_model_equivalence(self):
super().test_pt_tf_model_equivalence()
def prepare_tapas_single_inputs_for_inference():
# Here we prepare a single table-question pair to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
}
queries = "Which footballer is 33 years old?"
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_inference():
# Here we prepare a batch of 2 table-question pairs to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "How many goals does Ronaldo have?"]
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_training():
# Here we prepare a DIFFERENT batch of 2 table-question pairs to test TAPAS training on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "What's the total number of goals?"]
table = pd.DataFrame.from_dict(data)
answer_coordinates = [[(0, 0)], [(0, 2), (1, 2)]]
answer_text = [["Lionel Messi"], ["1462"]]
float_answer = [float("NaN"), float("1462")]
return table, queries, answer_coordinates, answer_text, float_answer
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasModelIntegrationTest(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
@slow
def test_inference_no_head(self):
# ideally we want to test this with the weights of tapas_inter_masklm_base_reset,
# but since it's not straightforward to do this with the TF 1 implementation, we test it with
# the weights of the WTQ base model (i.e. tapas_wtq_wikisql_sqa_inter_masklm_base_reset)
model = TapasModel.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# test the sequence output
expected_slice = torch.tensor(
[
[
[-0.141581565, -0.599805772, 0.747186482],
[-0.143664181, -0.602008104, 0.749218345],
[-0.15169853, -0.603363097, 0.741370678],
]
],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.last_hidden_state[:, :3, :3], expected_slice, atol=0.0005))
# test the pooled output
expected_slice = torch.tensor([[0.987518311, -0.970520139, -0.994303405]], device=torch_device)
self.assertTrue(torch.allclose(outputs.pooler_output[:, :3], expected_slice, atol=0.0005))
@unittest.skip(reason="Model not available yet")
def test_inference_masked_lm(self):
pass
# TapasForQuestionAnswering has 3 possible ways of being fine-tuned:
# - conversational set-up (SQA)
# - weak supervision for aggregation (WTQ, WikiSQL)
# - strong supervision for aggregation (WikiSQL-supervised)
# We test all of them:
@slow
def test_inference_question_answering_head_conversational(self):
# note that google/tapas-base-finetuned-sqa should correspond to tapas_sqa_inter_masklm_base_reset
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa").to(torch_device)
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
self.assertEqual(logits.shape, expected_shape)
expected_tensor = torch.tensor(
[
[
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-9997.22461,
-16.2628059,
-10004.082,
15.4330549,
15.4330549,
15.4330549,
-9990.42,
-16.3270779,
-16.3270779,
-16.3270779,
-16.3270779,
-16.3270779,
-10004.8506,
]
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.015))
@slow
def test_inference_question_answering_head_conversational_absolute_embeddings(self):
# note that google/tapas-small-finetuned-sqa should correspond to tapas_sqa_inter_masklm_small_reset
# however here we test the version with absolute position embeddings
model = TapasForQuestionAnswering.from_pretrained("google/tapas-small-finetuned-sqa", revision="no_reset").to(
torch_device
)
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
self.assertEqual(logits.shape, expected_shape)
expected_tensor = torch.tensor(
[
[
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-10014.7793,
-18.8419304,
-10018.0391,
17.7848816,
17.7848816,
17.7848816,
-9981.02832,
-16.4005489,
-16.4005489,
-16.4005489,
-16.4005489,
-16.4005489,
-10013.4736,
]
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.01))
@slow
def test_inference_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries = prepare_tapas_batch_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
inputs_on_device = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs_on_device)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((2, 28))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[-160.375504, -160.375504, -160.375504, -10072.3965, -10070.9414, -10094.9736],
[-9861.6123, -9861.6123, -9861.6123, -9861.6123, -9891.01172, 146.600677],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[:, -6:], expected_slice, atol=0.4))
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = torch.Size((2, 4))
self.assertEqual(logits_aggregation.shape, expected_shape)
expected_tensor = torch.tensor(
[[18.8545208, -9.76614857, -6.3128891, -2.93525243], [-4.05782509, 40.0351, -5.35329962, 23.3978653]],
device=torch_device,
)
self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.001))
# test the predicted answer coordinates and aggregation indices
EXPECTED_PREDICTED_ANSWER_COORDINATES = [[(0, 0)], [(1, 2)]]
EXPECTED_PREDICTED_AGGREGATION_INDICES = [0, 1]
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
inputs, outputs.logits.detach().cpu(), outputs.logits_aggregation.detach().cpu()
)
self.assertEqual(EXPECTED_PREDICTED_ANSWER_COORDINATES, predicted_answer_coordinates)
self.assertEqual(EXPECTED_PREDICTED_AGGREGATION_INDICES, predicted_aggregation_indices)
@slow
def test_training_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq").to(torch_device)
model.to(torch_device)
# normally we should put the model in training mode but it's a pain to do this with the TF 1 implementation
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries, answer_coordinates, answer_text, float_answer = prepare_tapas_batch_inputs_for_training()
inputs = tokenizer(
table=table,
queries=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
padding="longest",
return_tensors="pt",
)
# prepare data (created by the tokenizer) and move to torch_device
input_ids = inputs["input_ids"].to(torch_device)
attention_mask = inputs["attention_mask"].to(torch_device)
token_type_ids = inputs["token_type_ids"].to(torch_device)
labels = inputs["labels"].to(torch_device)
numeric_values = inputs["numeric_values"].to(torch_device)
numeric_values_scale = inputs["numeric_values_scale"].to(torch_device)
# the answer should be prepared by the user
float_answer = torch.FloatTensor(float_answer).to(torch_device)
# forward pass to get loss + logits:
with torch.no_grad():
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=labels,
numeric_values=numeric_values,
numeric_values_scale=numeric_values_scale,
float_answer=float_answer,
)
# test the loss
loss = outputs.loss
expected_loss = torch.tensor(3.3527612686157227e-08, device=torch_device)
self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-6))
# test the logits on the first example
logits = outputs.logits
expected_shape = torch.Size((2, 29))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-10072.2266,
-10070.8896,
-10092.6006,
-10092.6006,
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, -9:], expected_slice, atol=1e-6))
# test the aggregation logits on the second example
logits_aggregation = outputs.logits_aggregation
expected_shape = torch.Size((2, 4))
self.assertEqual(logits_aggregation.shape, expected_shape)
expected_slice = torch.tensor([-4.0538, 40.0304, -5.3554, 23.3965], device=torch_device)
self.assertTrue(torch.allclose(logits_aggregation[1, -4:], expected_slice, atol=1e-4))
@slow
def test_inference_question_answering_head_strong_supervision(self):
# note that google/tapas-base-finetuned-wikisql-supervised should correspond to tapas_wikisql_sqa_inter_masklm_base_reset
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wikisql-supervised").to(
torch_device
)
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = torch.Size((1, 21))
self.assertEqual(logits.shape, expected_shape)
expected_tensor = torch.tensor(
[
[
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-18.6185989,
-10008.7969,
17.6355762,
17.6355762,
17.6355762,
-10002.4404,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-10007.0977,
]
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits, expected_tensor, atol=0.02))
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = torch.Size((1, 4))
self.assertEqual(logits_aggregation.shape, expected_shape)
expected_tensor = torch.tensor(
[[16.5659733, -3.06624889, -2.34152961, -0.970244825]], device=torch_device
) # PyTorch model outputs [[16.5679, -3.0668, -2.3442, -0.9674]]
self.assertTrue(torch.allclose(logits_aggregation, expected_tensor, atol=0.003))
@slow
def test_inference_classification_head(self):
# note that google/tapas-base-finetuned-tabfact should correspond to tapas_tabfact_inter_masklm_base_reset
model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact").to(torch_device)
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="pt")
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# test the classification logits
logits = outputs.logits
expected_shape = torch.Size((1, 2))
self.assertEqual(logits.shape, expected_shape)
expected_tensor = torch.tensor(
[[0.795137286, 9.5572]], device=torch_device
) # Note that the PyTorch model outputs [[0.8057, 9.5281]]
self.assertTrue(torch.allclose(outputs.logits, expected_tensor, atol=0.05))
# Below: tests for Tapas utilities which are defined in modeling_tapas.py.
# These are based on segmented_tensor_test.py of the original implementation.
# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py
@unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
@require_torch
class TapasUtilitiesTest(unittest.TestCase):
def _prepare_tables(self):
"""Prepares two tables, both with three distinct rows.
The first table has two columns:
1.0, 2.0 | 3.0
2.0, 0.0 | 1.0
1.0, 3.0 | 4.0
The second table has three columns:
1.0 | 2.0 | 3.0
2.0 | 0.0 | 1.0
1.0 | 3.0 | 4.0
Returns:
SegmentedTensors with the tables.
"""
values = torch.tensor(
[
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
]
)
row_index = IndexMap(
indices=torch.tensor(
[
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
]
),
num_segments=3,
batch_dims=1,
)
col_index = IndexMap(
indices=torch.tensor(
[
[[0, 0, 1], [0, 0, 1], [0, 0, 1]],
[[0, 1, 2], [0, 1, 2], [0, 1, 2]],
]
),
num_segments=3,
batch_dims=1,
)
return values, row_index, col_index
def test_product_index(self):
_, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_index_proj = cell_index.project_outer(cell_index)
col_index_proj = cell_index.project_inner(cell_index)
ind = cell_index.indices
self.assertEqual(cell_index.num_segments, 9)
# Projections should give back the original indices.
# we use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(row_index.indices.numpy(), row_index_proj.indices.numpy())
self.assertEqual(row_index.num_segments, row_index_proj.num_segments)
self.assertEqual(row_index.batch_dims, row_index_proj.batch_dims)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(col_index.indices.numpy(), col_index_proj.indices.numpy())
self.assertEqual(col_index.batch_dims, col_index_proj.batch_dims)
# The first and second "column" are identified in the first table.
for i in range(3):
self.assertEqual(ind[0, i, 0], ind[0, i, 1])
self.assertNotEqual(ind[0, i, 0], ind[0, i, 2])
# All rows are distinct in the first table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 and j != j_2:
self.assertNotEqual(ind[0, i, j], ind[0, i_2, j_2])
# All cells are distinct in the second table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 or j != j_2:
self.assertNotEqual(ind[1, i, j], ind[1, i_2, j_2])
def test_flatten(self):
_, row_index, col_index = self._prepare_tables()
row_index_flat = flatten(row_index)
col_index_flat = flatten(col_index)
shape = [3, 4, 5]
batched_index = IndexMap(indices=torch.zeros(shape).type(torch.LongTensor), num_segments=1, batch_dims=3)
batched_index_flat = flatten(batched_index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(
row_index_flat.indices.numpy(), [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
)
np.testing.assert_array_equal(
col_index_flat.indices.numpy(), [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 4, 5, 3, 4, 5, 3, 4, 5]
)
self.assertEqual(batched_index_flat.num_segments.numpy(), np.prod(shape))
np.testing.assert_array_equal(batched_index_flat.indices.numpy(), range(np.prod(shape)))
def test_range_index_map(self):
batch_shape = [3, 4]
num_segments = 5
index = range_index_map(batch_shape, num_segments)
self.assertEqual(num_segments, index.num_segments)
self.assertEqual(2, index.batch_dims)
indices = index.indices
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(list(indices.size()), [3, 4, 5])
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(indices[i, j, :].numpy(), range(num_segments))
def test_reduce_sum(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_sum, _ = reduce_sum(values, row_index)
col_sum, _ = reduce_sum(values, col_index)
cell_sum, _ = reduce_sum(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(row_sum.numpy(), [[6.0, 3.0, 8.0], [6.0, 3.0, 8.0]])
np.testing.assert_allclose(col_sum.numpy(), [[9.0, 8.0, 0.0], [4.0, 5.0, 8.0]])
np.testing.assert_allclose(
cell_sum.numpy(),
[[3.0, 3.0, 0.0, 2.0, 1.0, 0.0, 4.0, 4.0, 0.0], [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0]],
)
def test_reduce_mean(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_mean, _ = reduce_mean(values, row_index)
col_mean, _ = reduce_mean(values, col_index)
cell_mean, _ = reduce_mean(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(
row_mean.numpy(), [[6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0], [6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0]]
)
np.testing.assert_allclose(col_mean.numpy(), [[9.0 / 6.0, 8.0 / 3.0, 0.0], [4.0 / 3.0, 5.0 / 3.0, 8.0 / 3.0]])
np.testing.assert_allclose(
cell_mean.numpy(),
[
[3.0 / 2.0, 3.0, 0.0, 2.0 / 2.0, 1.0, 0.0, 4.0 / 2.0, 4.0, 0.0],
[1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0],
],
)
def test_reduce_max(self):
values = torch.as_tensor([2.0, 1.0, 0.0, 3.0])
index = IndexMap(indices=torch.as_tensor([0, 1, 0, 1]), num_segments=2)
maximum, _ = reduce_max(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(maximum.numpy(), [2, 3])
def test_reduce_sum_vectorized(self):
values = torch.as_tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]])
index = IndexMap(indices=torch.as_tensor([[0, 0, 1]]), num_segments=2, batch_dims=0)
sums, new_index = reduce_sum(values, index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(sums.numpy(), [3.0, 3.0])
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(new_index.indices.numpy(), [0, 1])
np.testing.assert_array_equal(new_index.num_segments.numpy(), 2)
np.testing.assert_array_equal(new_index.batch_dims, 0)
def test_gather(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
# Compute sums and then gather. The result should have the same shape as
# the original table and each element should contain the sum the values in
# its cell.
sums, _ = reduce_sum(values, cell_index)
cell_sum = gather(sums, cell_index)
assert cell_sum.size() == values.size()
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_allclose(
cell_sum.numpy(),
[[[3.0, 3.0, 3.0], [2.0, 2.0, 1.0], [4.0, 4.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]],
)
def test_gather_vectorized(self):
values = torch.as_tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
index = IndexMap(indices=torch.as_tensor([[0, 1], [1, 0]]), num_segments=2, batch_dims=1)
result = gather(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(result.numpy(), [[[1, 2], [3, 4]], [[7, 8], [5, 6]]])
|