File size: 65,179 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import shutil
import tempfile
import unittest
from typing import List

import numpy as np
import pandas as pd

from transformers import AddedToken, is_torch_available
from transformers.models.tapas.tokenization_tapas import (
    VOCAB_FILES_NAMES,
    BasicTokenizer,
    TapasTokenizer,
    WordpieceTokenizer,
    _is_control,
    _is_punctuation,
    _is_whitespace,
)
from transformers.testing_utils import (
    is_pt_tf_cross_test,
    require_pandas,
    require_tensorflow_probability,
    require_tokenizers,
    require_torch,
    slow,
)

from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings


if is_torch_available():
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
    is_torch_greater_or_equal_than_1_12 = False


@require_tokenizers
@require_pandas
class TapasTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = TapasTokenizer
    test_rust_tokenizer = False
    space_between_special_tokens = True
    from_pretrained_filter = filter_non_english
    test_seq2seq = False

    def get_table(
        self,
        tokenizer: TapasTokenizer,
        length=5,
    ):
        toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]

        if length == 0:
            data = {}
        else:
            data = {toks[0]: [toks[tok] for tok in range(1, length)]}

        table = pd.DataFrame.from_dict(data)

        return table

    def get_table_and_query(
        self,
        tokenizer: TapasTokenizer,
        length=5,
    ):
        toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]
        table = self.get_table(tokenizer, length=length - 3)
        query = " ".join(toks[:3])

        return table, query

    def get_clean_sequence(
        self,
        tokenizer: TapasTokenizer,
        with_prefix_space=False,
        max_length=20,
        min_length=5,
        empty_table: bool = False,
        add_special_tokens: bool = True,
        return_table_and_query: bool = False,
    ):
        toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))]

        if empty_table:
            table = pd.DataFrame.from_dict({})
            query = " ".join(toks[:min_length])
        else:
            data = {toks[0]: [toks[tok] for tok in range(1, min_length - 3)]}
            table = pd.DataFrame.from_dict(data)
            query = " ".join(toks[:3])

        output_ids = tokenizer.encode(table, query, add_special_tokens=add_special_tokens)
        output_txt = tokenizer.decode(output_ids)

        assert len(output_ids) >= min_length, "Update the code to generate the sequences so that they are larger"
        assert len(output_ids) <= max_length, "Update the code to generate the sequences so that they are smaller"

        if return_table_and_query:
            return output_txt, output_ids, table, query

        return output_txt, output_ids

    def setUp(self):
        super().setUp()

        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    def get_input_output_texts(self, tokenizer):
        input_text = "UNwant\u00E9d,running"
        output_text = "unwanted, running"
        return input_text, output_text

    @require_tensorflow_probability
    @slow
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return

                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()

                if config.is_encoder_decoder or config.pad_token_id is None:
                    return

                model = model_class(config)

                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                self.assertGreaterEqual(model.config.vocab_size, len(tokenizer))

                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                table = self.get_table(tokenizer, length=0)
                encoded_sequence = tokenizer.encode_plus(table, sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus(table, [sequence, sequence], return_tensors="tf")

                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "UNwant\u00E9d,running"

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        # With lower casing
        tokenizer = self.get_tokenizer(do_lower_case=True)
        rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)

        sequence = "UNwant\u00E9d,running"

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

    def test_chinese(self):
        tokenizer = BasicTokenizer()

        self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])

    def test_basic_tokenizer_lower(self):
        tokenizer = BasicTokenizer(do_lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU?  "), ["hello", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])

    def test_basic_tokenizer_lower_strip_accents_false(self):
        tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hällo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])

    def test_basic_tokenizer_lower_strip_accents_true(self):
        tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hallo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])

    def test_basic_tokenizer_lower_strip_accents_default(self):
        tokenizer = BasicTokenizer(do_lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["hallo", "!", "how", "are", "you", "?"]
        )
        self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])

    def test_basic_tokenizer_no_lower(self):
        tokenizer = BasicTokenizer(do_lower_case=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_no_lower_strip_accents_false(self):
        tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_no_lower_strip_accents_true(self):
        tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHäLLo!how  \n Are yoU?  "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
        )

    def test_basic_tokenizer_respects_never_split_tokens(self):
        tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo!how  \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
        )

    def test_wordpiece_tokenizer(self):
        vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]

        vocab = {}
        for i, token in enumerate(vocab_tokens):
            vocab[token] = i
        tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")

        self.assertListEqual(tokenizer.tokenize(""), [])

        self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])

        self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])

    def test_is_whitespace(self):
        self.assertTrue(_is_whitespace(" "))
        self.assertTrue(_is_whitespace("\t"))
        self.assertTrue(_is_whitespace("\r"))
        self.assertTrue(_is_whitespace("\n"))
        self.assertTrue(_is_whitespace("\u00A0"))

        self.assertFalse(_is_whitespace("A"))
        self.assertFalse(_is_whitespace("-"))

    def test_is_control(self):
        self.assertTrue(_is_control("\u0005"))

        self.assertFalse(_is_control("A"))
        self.assertFalse(_is_control(" "))
        self.assertFalse(_is_control("\t"))
        self.assertFalse(_is_control("\r"))

    def test_is_punctuation(self):
        self.assertTrue(_is_punctuation("-"))
        self.assertTrue(_is_punctuation("$"))
        self.assertTrue(_is_punctuation("`"))
        self.assertTrue(_is_punctuation("."))

        self.assertFalse(_is_punctuation("A"))
        self.assertFalse(_is_punctuation(" "))

    def test_clean_text(self):
        tokenizer = self.get_tokenizer()

        # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
        self.assertListEqual(
            [tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], ["[EMPTY]"], ["[UNK]"]]
        )

    @slow
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_class.from_pretrained("google/tapas-base-finetuned-wtq")

        empty_table = self.get_table(tokenizer, length=0)
        table = self.get_table(tokenizer, length=10)

        text = tokenizer.encode(table, add_special_tokens=False)
        text_2 = tokenizer.encode(empty_table, "multi-sequence build", add_special_tokens=False)

        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_pair == [101] + text + [102] + text_2

    def test_offsets_with_special_characters(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
                tokens = tokenizer_r.encode_plus(
                    sentence,
                    return_attention_mask=False,
                    return_token_type_ids=False,
                    return_offsets_mapping=True,
                    add_special_tokens=True,
                )

                do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
                expected_results = (
                    [
                        ((0, 0), tokenizer_r.cls_token),
                        ((0, 1), "A"),
                        ((1, 2), ","),
                        ((3, 5), "na"),
                        ((5, 6), "##ï"),
                        ((6, 8), "##ve"),
                        ((9, 15), tokenizer_r.mask_token),
                        ((16, 21), "Allen"),
                        ((21, 23), "##NL"),
                        ((23, 24), "##P"),
                        ((25, 33), "sentence"),
                        ((33, 34), "."),
                        ((0, 0), tokenizer_r.sep_token),
                    ]
                    if not do_lower_case
                    else [
                        ((0, 0), tokenizer_r.cls_token),
                        ((0, 1), "a"),
                        ((1, 2), ","),
                        ((3, 8), "naive"),
                        ((9, 15), tokenizer_r.mask_token),
                        ((16, 21), "allen"),
                        ((21, 23), "##nl"),
                        ((23, 24), "##p"),
                        ((25, 33), "sentence"),
                        ((33, 34), "."),
                        ((0, 0), tokenizer_r.sep_token),
                    ]
                )

                self.assertEqual(
                    [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
                )
                self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])

    def test_add_special_tokens(self):
        tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_table = self.get_table(tokenizer, length=0)

                special_token = "[SPECIAL_TOKEN]"

                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(input_table, special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)

                decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)

    def test_add_tokens_tokenizer(self):
        tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode(table, "aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    table,
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l",
                    add_special_tokens=False,
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)

    @require_tokenizers
    def test_encode_decode_with_spaces(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)

                new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
                tokenizer.add_tokens(new_toks)
                input = "[ABC][DEF][ABC][DEF]"
                if self.space_between_special_tokens:
                    output = "[ABC] [DEF] [ABC] [DEF]"
                else:
                    output = input
                encoded = tokenizer.encode(table, input, add_special_tokens=False)
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
                self.assertIn(decoded, [output, output.lower()])

    def test_encode_plus_with_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(table, sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

                not_padded_sequence = tokenizer.encode_plus(
                    table,
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                not_padded_sequence = tokenizer.encode_plus(
                    table,
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    table,
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

                assert sequence_length + padding_size == right_padded_sequence_length
                assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
                assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    table,
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

                assert sequence_length + padding_size == left_padded_sequence_length
                assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
                assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

                    assert (
                        token_type_ids + [[token_type_padding_idx] * 7] * padding_size == right_padded_token_type_ids
                    )
                    assert [[token_type_padding_idx] * 7] * padding_size + token_type_ids == left_padded_token_type_ids

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

                    assert attention_mask + [0] * padding_size == right_padded_attention_mask
                    assert [0] * padding_size + attention_mask == left_padded_attention_mask

    def test_internal_consistency(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                input_text, output_text = self.get_input_output_texts(tokenizer)

                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(table, input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)

                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)

                self.assertEqual(text_2, output_text)

    def test_mask_output(self):
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table, query = self.get_table_and_query(tokenizer)

                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    information = tokenizer.encode_plus(table, query, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))

    @unittest.skip("TAPAS tokenizer only handles two sequences.")
    def test_maximum_encoding_length_pair_input(self):
        pass

    @unittest.skip("TAPAS tokenizer only handles two sequences.")
    def test_maximum_encoding_length_single_input(self):
        pass

    def test_number_of_added_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table, query = self.get_table_and_query(tokenizer)

                sequences = tokenizer.encode(table, query, add_special_tokens=False)
                attached_sequences = tokenizer.encode(table, query, add_special_tokens=True)

                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )

    def test_padding_to_max_length(self):
        """We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated"""
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer)
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(table, sequence)
                sequence_length = len(encoded_sequence)
                # FIXME: the next line should be padding(max_length) to avoid warning
                padded_sequence = tokenizer.encode(
                    table, sequence, max_length=sequence_length + padding_size, padding=True
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(table, sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(table, sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                table = self.get_table(tokenizer, length=0)
                encoded_sequences_1 = tokenizer.encode_plus(table, sequences[0])
                encoded_sequences_2 = tokenizer(table, sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                table = self.get_table(tokenizer, length=10)
                encoded_sequences_1 = tokenizer.encode_plus(table, sequences[1])
                encoded_sequences_2 = tokenizer(table, sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                table = self.get_table(tokenizer, length=0)
                encoded_sequences_1 = tokenizer.batch_encode_plus(table, sequences)
                encoded_sequences_2 = tokenizer(table, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(table, sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(table, sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(table, sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(table, sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    table, sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    table, sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
                    )

    @unittest.skip("batch_encode_plus does not handle overflowing tokens.")
    def test_batch_encode_plus_overflowing_tokens(self):
        pass

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    table, sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

        # Left padding tests
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    table, sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                else:
                    empty_tokens = tokenizer(table, padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer(table, "This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")

                    normal_tokens = tokenizer(table, "This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")

                    # Should also work with truncation
                    normal_tokens = tokenizer(table, "This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")

    @unittest.skip("TAPAS cannot handle `prepare_for_model` without passing by `encode_plus` or `batch_encode_plus`")
    def test_prepare_for_model(self):
        pass

    def test_tokenizer_slow_store_full_signature(self):
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

    def test_special_tokens_mask_input_pairs(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                empty_table = self.get_table(tokenizer, length=0)
                table = self.get_table(tokenizer, length=10)
                encoded_sequence = tokenizer.encode(empty_table, sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(table, "", add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    table,
                    sequence_0,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
                    # add_prefix_space=False,
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)

    def test_special_tokens_mask(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(table, sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)

    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertNotEqual(tokenizer.model_max_length, 42)

        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                table = self.get_table(tokenizer, length=0)
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                before_tokens = tokenizer.encode(table, sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(table, sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)

    @unittest.skip("Not implemented")
    def test_right_and_left_truncation(self):
        pass

    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                table = self.get_table(tokenizer, length=0)
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(table, sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    table, sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(table, sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    table, sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(table, sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(table, sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(table, sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(table, sequence)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(table, sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left

    def test_token_type_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                empty_table = self.get_table(tokenizer, length=0)
                seq_0 = "Test this method."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
                # (regardless of whether the model use token type ids)
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(empty_table, seq_0, return_token_type_ids=True)

                # Assert that the token type IDs have the same length as the input IDs
                self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))

                # Assert that each token type ID has 7 values
                self.assertTrue(all(len(token_type_ids) == 7 for token_type_ids in output["token_type_ids"]))

                # Do the same test as modeling common.
                self.assertIn(0, output["token_type_ids"][0])

    @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
    @require_torch
    @slow
    def test_torch_encode_plus_sent_to_model(self):
        import torch

        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return

                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()

                if config.is_encoder_decoder or config.pad_token_id is None:
                    return

                model = model_class(config)

                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
                assert (
                    (model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
                    if is_using_common_embeddings
                    else True
                )

                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                table = self.get_table(tokenizer, length=0)
                encoded_sequence = tokenizer.encode_plus(table, sequence, return_tensors="pt")
                batch_encoded_sequence = tokenizer.batch_encode_plus(table, [sequence, sequence], return_tensors="pt")
                # This should not fail

                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)

    @unittest.skip("TAPAS doesn't handle pre-tokenized inputs.")
    def test_pretokenized_inputs(self):
        pass

    @slow
    def test_tapas_truncation_integration_test(self):
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
        }
        queries = [
            "When was Brad Pitt born?",
            "Which actor appeared in the least number of movies?",
            "What is the average number of movies?",
        ]
        table = pd.DataFrame.from_dict(data)

        tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", model_max_length=512)

        for i in range(12):
            # The table cannot even encode the headers, so raise an error
            with self.assertRaises(ValueError):
                tokenizer.encode(table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit")

        for i in range(12, 512):
            new_encoded_inputs = tokenizer.encode(
                table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit"
            )

            # Ensure that the input IDs are less than the max length defined.
            self.assertLessEqual(len(new_encoded_inputs), i)

        tokenizer.model_max_length = 20
        new_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation=True)
        dropped_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation="drop_rows_to_fit")

        # Ensure that the input IDs are still truncated when no max_length is specified
        self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs)
        self.assertLessEqual(len(new_encoded_inputs), 20)

    @slow
    def test_min_max_question_length(self):
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
        }
        queries = "When was Brad Pitt born?"
        table = pd.DataFrame.from_dict(data)

        # test max_question_length
        tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", max_question_length=2)

        encoding = tokenizer(table=table, queries=queries)

        # query should not be tokenized as it's longer than the specified max_question_length
        expected_results = [101, 102]

        self.assertListEqual(encoding.input_ids[:2], expected_results)

        # test min_question_length
        tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", min_question_length=30)

        encoding = tokenizer(table=table, queries=queries)

        # query should not be tokenized as it's shorter than the specified min_question_length
        expected_results = [101, 102]

        self.assertListEqual(encoding.input_ids[:2], expected_results)

    @is_pt_tf_cross_test
    def test_batch_encode_plus_tensors(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                table = self.get_table(tokenizer, length=0)

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
                        ValueError,
                        tokenizer.batch_encode_plus,
                        table,
                        sequences,
                        padding=True,
                        return_tensors="pt",
                    )
                    self.assertRaises(
                        ValueError,
                        tokenizer.batch_encode_plus,
                        table,
                        sequences,
                        padding="longest",
                        return_tensors="tf",
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(table, sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(
                        table, sequences, padding="longest", return_tensors="tf"
                    )
                    encoded_sequences = tokenizer.batch_encode_plus(table, sequences, padding=True)

                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]

                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)

    @slow
    def test_tapas_integration_test(self):
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"],
        }
        queries = [
            "When was Brad Pitt born?",
            "Which actor appeared in the least number of movies?",
            "What is the average number of movies?",
        ]
        table = pd.DataFrame.from_dict(data)

        tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512)

        # fmt: off
        expected_results = {'input_ids':[101,2043,2001,8226,15091,2141,1029,102,5889,2287,2193,1997,5691,3058,1997,4182,8226,15091,5179,6584,2324,2285,3699,14720,4487,6178,9488,3429,5187,2340,2281,3326,2577,18856,7828,3240,5354,6353,1020,2089,3777],'attention_mask':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],'token_type_ids':[[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[1,1,0,0,0,0,0],[1,2,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,1,1,0,0,0,0],[1,1,1,0,0,0,0],[1,2,1,0,2,2,0],[1,3,1,0,3,1,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,2,2,0,1,3,0],[1,3,2,0,1,3,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,2,3,0,3,1,0],[1,3,3,0,2,2,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0]]}  # noqa: E231
        # fmt: on

        new_encoded_inputs = tokenizer.encode_plus(table=table, query=queries[0])

        self.assertDictEqual(dict(new_encoded_inputs), expected_results)

    @slow
    def test_full_tokenizer(self):
        data = [
            ["Pos", "No", "Driver", "Team", "Laps", "Time/Retired", "Grid", "Points"],
            ["1", "32", "Patrick Carpentier", "Team Player's", "87", "1:48:11.023", "1", "22"],
            ["2", "1", "Bruno Junqueira", "Newman/Haas Racing", "87", "+0.8 secs", "2", "17"],
            ["3", "3", "Paul Tracy", "Team Player's", "87", "+28.6 secs", "3", "14"],
            ["4", "9", "Michel Jourdain, Jr.", "Team Rahal", "87", "+40.8 secs", "13", "12"],
            ["5", "34", "Mario Haberfeld", "Mi-Jack Conquest Racing", "87", "+42.1 secs", "6", "10"],
            ["6", "20", "Oriol Servia", "Patrick Racing", "87", "+1:00.2", "10", "8"],
            ["7", "51", "Adrian Fernandez", "Fernandez Racing", "87", "+1:01.4", "5", "6"],
            ["8", "12", "Jimmy Vasser", "American Spirit Team Johansson", "87", "+1:01.8", "8", "5"],
            ["9", "7", "Tiago Monteiro", "Fittipaldi-Dingman Racing", "86", "+ 1 Lap", "15", "4"],
            ["10", "55", "Mario Dominguez", "Herdez Competition", "86", "+ 1 Lap", "11", "3"],
            ["11", "27", "Bryan Herta", "PK Racing", "86", "+ 1 Lap", "12", "2"],
            ["12", "31", "Ryan Hunter-Reay", "American Spirit Team Johansson", "86", "+ 1 Lap", "17", "1"],
            ["13", "19", "Joel Camathias", "Dale Coyne Racing", "85", "+ 2 Laps", "18", "0"],
            ["14", "33", "Alex Tagliani", "Rocketsports Racing", "85", "+ 2 Laps", "14", "0"],
            ["15", "4", "Roberto Moreno", "Herdez Competition", "85", "+ 2 Laps", "9", "0"],
            ["16", "11", "Geoff Boss", "Dale Coyne Racing", "83", "Mechanical", "19", "0"],
            ["17", "2", "Sebastien Bourdais", "Newman/Haas Racing", "77", "Mechanical", "4", "0"],
            ["18", "15", "Darren Manning", "Walker Racing", "12", "Mechanical", "7", "0"],
            ["19", "5", "Rodolfo Lavin", "Walker Racing", "10", "Mechanical", "16", "0"],
        ]
        query = "what were the drivers names?"
        table = pd.DataFrame.from_records(data[1:], columns=data[0])

        tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512)
        model_inputs = tokenizer(table, query, padding="max_length")

        input_ids = model_inputs["input_ids"]
        token_type_ids = np.array(model_inputs["token_type_ids"])
        segment_ids = token_type_ids[:, 0]
        column_ids = token_type_ids[:, 1]
        row_ids = token_type_ids[:, 2]

        # fmt: off
        expected_results = {'input_ids':[101,2054,2020,1996,6853,3415,1029,102,13433,2015,2053,4062,2136,10876,2051,1013,3394,8370,2685,1015,3590,4754,29267,4765,3771,2136,2447,1005,1055,6584,1015,1024,4466,1024,2340,1012,6185,2509,1015,2570,1016,1015,10391,12022,4226,7895,10625,1013,22996,3868,6584,1009,1014,1012,1022,10819,2015,1016,2459,1017,1017,2703,10555,2136,2447,1005,1055,6584,1009,2654,1012,1020,10819,2015,1017,2403,1018,1023,8709,8183,3126,21351,2078,1010,3781,1012,2136,10958,8865,6584,1009,2871,1012,1022,10819,2015,2410,2260,1019,4090,7986,5292,5677,8151,2771,1011,2990,9187,3868,6584,1009,4413,1012,1015,10819,2015,1020,2184,1020,2322,2030,20282,14262,9035,4754,3868,6584,1009,1015,1024,4002,1012,1016,2184,1022,1021,4868,7918,12023,12023,3868,6584,1009,1015,1024,5890,1012,1018,1019,1020,1022,2260,5261,12436,18116,2137,4382,2136,26447,6584,1009,1015,1024,5890,1012,1022,1022,1019,1023,1021,27339,3995,10125,9711,4906,25101,24657,1011,22033,2386,3868,6564,1009,1015,5001,2321,1018,2184,4583,7986,14383,2075,29488,14906,9351,2971,6564,1009,1015,5001,2340,1017,2340,2676,8527,2014,2696,1052,2243,3868,6564,1009,1015,5001,2260,1016,2260,2861,4575,4477,1011,2128,4710,2137,4382,2136,26447,6564,1009,1015,5001,2459,1015,2410,2539,8963,11503,25457,3022,8512,2522,9654,3868,5594,1009,1016,10876,2324,1014,2403,3943,4074,6415,15204,2072,12496,25378,3868,5594,1009,1016,10876,2403,1014,2321,1018,10704,17921,14906,9351,2971,5594,1009,1016,10876,1023,1014,2385,2340,14915,5795,8512,2522,9654,3868,6640,6228,2539,1014,2459,1016,28328,8945,3126,21351,2015,10625,1013,22996,3868,6255,6228,1018,1014,2324,2321,12270,11956,5232,3868,2260,6228,1021,1014,2539,1019,8473,28027,2080,2474,6371,5232,3868,2184,6228,2385,1014,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'column_ids':[0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,3,3,3,3,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,7,8,1,2,3,3,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,5,6,7,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'row_ids':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,19,19,19,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'segment_ids':[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}  # noqa: E231
        # fmt: on

        self.assertListEqual(input_ids, expected_results["input_ids"])
        self.assertListEqual(segment_ids.tolist(), expected_results["segment_ids"])
        self.assertListEqual(column_ids.tolist(), expected_results["column_ids"])
        self.assertListEqual(row_ids.tolist(), expected_results["row_ids"])

    @unittest.skip("Skip this test while all models are still to be uploaded.")
    def test_pretrained_model_lists(self):
        pass

    @unittest.skip("Doesn't support another framework than PyTorch")
    def test_np_encode_plus_sent_to_model(self):
        pass