Spaces:
Paused
Paused
File size: 40,315 Bytes
ee6e328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Wav2Vec2 tokenizer."""
import inspect
import json
import os
import random
import shutil
import tempfile
import unittest
import numpy as np
from transformers import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
Wav2Vec2Config,
Wav2Vec2CTCTokenizer,
Wav2Vec2Tokenizer,
)
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES, Wav2Vec2CTCTokenizerOutput
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class Wav2Vec2TokenizerTest(unittest.TestCase):
tokenizer_class = Wav2Vec2Tokenizer
def setUp(self):
super().setUp()
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return Wav2Vec2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def test_tokenizer_decode(self):
# TODO(PVP) - change to facebook
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
tokens = tokenizer.decode(sample_ids[0])
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_special(self):
# TODO(PVP) - change to facebook
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
sample_ids_2 = [
[11, 5, 5, 5, 5, 5, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98],
[
24,
22,
5,
tokenizer.pad_token_id,
tokenizer.pad_token_id,
tokenizer.pad_token_id,
tokenizer.word_delimiter_token_id,
24,
22,
5,
77,
tokenizer.word_delimiter_token_id,
],
]
batch_tokens = tokenizer.batch_decode(sample_ids)
batch_tokens_2 = tokenizer.batch_decode(sample_ids_2)
self.assertEqual(batch_tokens, batch_tokens_2)
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_added_tokens(self):
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer.add_tokens(["!", "?"])
tokenizer.add_special_tokens({"cls_token": "$$$"})
sample_ids = [
[
11,
5,
15,
tokenizer.pad_token_id,
15,
8,
98,
32,
32,
33,
tokenizer.word_delimiter_token_id,
32,
32,
33,
34,
34,
],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.pad_token_id, 34, 34],
]
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(batch_tokens, ["HELLO<unk>!?!?$$$", "BYE BYE<unk>$$$"])
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
tokenizer = self.get_tokenizer()
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test not batched input
encoded_sequences_1 = tokenizer(speech_inputs[0], return_tensors="np").input_values
encoded_sequences_2 = tokenizer(np_speech_inputs[0], return_tensors="np").input_values
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = tokenizer(speech_inputs, return_tensors="np").input_values
encoded_sequences_2 = tokenizer(np_speech_inputs, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = tokenizer(speech_inputs, return_tensors="np").input_values
encoded_sequences_2 = tokenizer(np_speech_inputs, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_padding(self, max_length=50):
def _input_values_have_equal_length(input_values):
length = len(input_values[0])
for input_values_slice in input_values[1:]:
if len(input_values_slice) != length:
return False
return True
def _input_values_are_equal(input_values_1, input_values_2):
if len(input_values_1) != len(input_values_2):
return False
for input_values_slice_1, input_values_slice_2 in zip(input_values_1, input_values_2):
if not np.allclose(np.asarray(input_values_slice_1), np.asarray(input_values_slice_2), atol=1e-3):
return False
return True
tokenizer = self.get_tokenizer()
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
input_values_1 = tokenizer(speech_inputs).input_values
input_values_2 = tokenizer(speech_inputs, padding="longest").input_values
input_values_3 = tokenizer(speech_inputs, padding="longest", max_length=1600).input_values
self.assertFalse(_input_values_have_equal_length(input_values_1))
self.assertTrue(_input_values_have_equal_length(input_values_2))
self.assertTrue(_input_values_have_equal_length(input_values_3))
self.assertTrue(_input_values_are_equal(input_values_2, input_values_3))
self.assertTrue(len(input_values_1[0]) == 800)
self.assertTrue(len(input_values_2[0]) == 1200)
# padding should be 0.0
self.assertTrue(abs(sum(np.asarray(input_values_2[0])[800:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_2[1])[1000:])) < 1e-3)
input_values_4 = tokenizer(speech_inputs, padding="max_length").input_values
input_values_5 = tokenizer(speech_inputs, padding="max_length", max_length=1600).input_values
self.assertTrue(_input_values_are_equal(input_values_1, input_values_4))
self.assertEqual(input_values_5.shape, (3, 1600))
# padding should be 0.0
self.assertTrue(abs(sum(np.asarray(input_values_5[0])[800:1200])) < 1e-3)
input_values_6 = tokenizer(speech_inputs, pad_to_multiple_of=500).input_values
input_values_7 = tokenizer(speech_inputs, padding="longest", pad_to_multiple_of=500).input_values
input_values_8 = tokenizer(
speech_inputs, padding="max_length", pad_to_multiple_of=500, max_length=2400
).input_values
self.assertTrue(_input_values_are_equal(input_values_1, input_values_6))
self.assertEqual(input_values_7.shape, (3, 1500))
self.assertEqual(input_values_8.shape, (3, 2500))
# padding should be 0.0
self.assertTrue(abs(sum(np.asarray(input_values_7[0])[800:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_7[1])[1000:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_7[2])[1200:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_8[0])[800:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_8[1])[1000:])) < 1e-3)
self.assertTrue(abs(sum(np.asarray(input_values_8[2])[1200:])) < 1e-3)
def test_save_pretrained(self):
pretrained_name = list(self.tokenizer_class.pretrained_vocab_files_map["vocab_file"].keys())[0]
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name)
tmpdirname2 = tempfile.mkdtemp()
tokenizer_files = tokenizer.save_pretrained(tmpdirname2)
self.assertSequenceEqual(
sorted(tuple(VOCAB_FILES_NAMES.values()) + ("special_tokens_map.json", "added_tokens.json")),
sorted(x.split(os.path.sep)[-1] for x in tokenizer_files),
)
# Checks everything loads correctly in the same way
tokenizer_p = self.tokenizer_class.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer.special_tokens_map:
self.assertTrue(key in tokenizer_p.special_tokens_map)
shutil.rmtree(tmpdirname2)
def test_get_vocab(self):
tokenizer = self.get_tokenizer()
vocab_dict = tokenizer.get_vocab()
self.assertIsInstance(vocab_dict, dict)
self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
self.assertEqual(len(vocab), len(tokenizer))
tokenizer.add_tokens(["asdfasdfasdfasdf"])
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
self.assertEqual(len(vocab), len(tokenizer))
def test_save_and_load_tokenizer(self):
tokenizer = self.get_tokenizer()
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
sample_ids = [0, 1, 4, 8, 9, 0, 12]
before_tokens = tokenizer.decode(sample_ids)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.decode(sample_ids)
after_vocab = after_tokenizer.get_vocab()
self.assertEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
shutil.rmtree(tmpdirname)
tokenizer = self.get_tokenizer()
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
before_len = len(tokenizer)
sample_ids = [0, 1, 4, 8, 9, 0, 12, before_len, before_len + 1, before_len + 2]
tokenizer.add_tokens(["?", "!"])
additional_special_tokens = tokenizer.additional_special_tokens
additional_special_tokens.append("&")
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
before_tokens = tokenizer.decode(sample_ids)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.decode(sample_ids)
after_vocab = after_tokenizer.get_vocab()
self.assertEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
self.assertTrue(len(tokenizer), before_len + 3)
self.assertTrue(len(tokenizer), len(after_tokenizer))
shutil.rmtree(tmpdirname)
def test_tokenizer_slow_store_full_signature(self):
signature = inspect.signature(self.tokenizer_class.__init__)
tokenizer = self.get_tokenizer()
for parameter_name, parameter in signature.parameters.items():
if parameter.default != inspect.Parameter.empty:
self.assertIn(parameter_name, tokenizer.init_kwargs)
def test_zero_mean_unit_variance_normalization(self):
tokenizer = self.get_tokenizer(do_normalize=True)
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
processed = tokenizer(speech_inputs, padding="longest")
input_values = processed.input_values
def _check_zero_mean_unit_variance(input_vector):
self.assertTrue(np.abs(np.mean(input_vector)) < 1e-3)
self.assertTrue(np.abs(np.var(input_vector) - 1) < 1e-3)
_check_zero_mean_unit_variance(input_values[0, :800])
_check_zero_mean_unit_variance(input_values[1, :1000])
_check_zero_mean_unit_variance(input_values[2])
def test_return_attention_mask(self):
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
# default case -> no attention_mask is returned
tokenizer = self.get_tokenizer()
processed = tokenizer(speech_inputs)
self.assertNotIn("attention_mask", processed)
# wav2vec2-lv60 -> return attention_mask
tokenizer = self.get_tokenizer(return_attention_mask=True)
processed = tokenizer(speech_inputs, padding="longest")
self.assertIn("attention_mask", processed)
self.assertListEqual(list(processed.attention_mask.shape), list(processed.input_values.shape))
self.assertListEqual(processed.attention_mask.sum(-1).tolist(), [800, 1000, 1200])
@slow
@require_torch
def test_pretrained_checkpoints_are_set_correctly(self):
# this test makes sure that models that are using
# group norm don't have their tokenizer return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
config = Wav2Vec2Config.from_pretrained(model_id)
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_id)
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(tokenizer.return_attention_mask, config.feat_extract_norm == "layer")
class Wav2Vec2CTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = Wav2Vec2CTCTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def test_tokenizer_add_token_chars(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
# check adding a single token
tokenizer.add_tokens("x")
token_ids = tokenizer("C x A").input_ids
self.assertEqual(token_ids, [19, 4, 32, 4, 7])
tokenizer.add_tokens(["a", "b", "c"])
token_ids = tokenizer("C a A c").input_ids
self.assertEqual(token_ids, [19, 4, 33, 4, 7, 4, 35])
tokenizer.add_tokens(["a", "b", "c"])
token_ids = tokenizer("CaA c").input_ids
self.assertEqual(token_ids, [19, 33, 7, 4, 35])
def test_tokenizer_add_token_words(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
# check adding a single token
tokenizer.add_tokens("xxx")
token_ids = tokenizer("C xxx A B").input_ids
self.assertEqual(token_ids, [19, 4, 32, 4, 7, 4, 24])
tokenizer.add_tokens(["aaa", "bbb", "ccc"])
token_ids = tokenizer("C aaa A ccc B B").input_ids
self.assertEqual(token_ids, [19, 4, 33, 4, 7, 4, 35, 4, 24, 4, 24])
tokenizer.add_tokens(["aaa", "bbb", "ccc"])
token_ids = tokenizer("CaaaA ccc B B").input_ids
self.assertEqual(token_ids, [19, 33, 7, 4, 35, 4, 24, 4, 24])
def test_tokenizer_decode(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
tokens = tokenizer.decode(sample_ids[0])
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_special(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
sample_ids_2 = [
[11, 5, 5, 5, 5, 5, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.pad_token_id, tokenizer.pad_token_id, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.word_delimiter_token_id],
]
# fmt: on
batch_tokens = tokenizer.batch_decode(sample_ids)
batch_tokens_2 = tokenizer.batch_decode(sample_ids_2)
self.assertEqual(batch_tokens, batch_tokens_2)
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_added_tokens(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer.add_tokens(["!", "?"])
tokenizer.add_special_tokens({"cls_token": "$$$"})
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 32, 32, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.pad_token_id, 34, 34],
]
# fmt: on
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(batch_tokens, ["HELLO<unk>!?!?$$$", "BYE BYE<unk>$$$"])
def test_special_characters_in_vocab(self):
sent = "ʈʰ æ æ̃ ˧ kʰ"
vocab_dict = {k: v for v, k in enumerate(set(sent.split()))}
vocab_file = os.path.join(self.tmpdirname, "vocab_special.json")
with open(vocab_file, "w") as f:
json.dump(vocab_dict, f)
tokenizer = Wav2Vec2CTCTokenizer(vocab_file)
expected_sent = tokenizer.decode(tokenizer(sent).input_ids, spaces_between_special_tokens=True)
self.assertEqual(sent, expected_sent)
tokenizer.save_pretrained(os.path.join(self.tmpdirname, "special_tokenizer"))
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(os.path.join(self.tmpdirname, "special_tokenizer"))
expected_sent = tokenizer.decode(tokenizer(sent).input_ids, spaces_between_special_tokens=True)
self.assertEqual(sent, expected_sent)
@staticmethod
def get_from_offsets(offsets, key):
retrieved_list = [d[key] for d in offsets]
return retrieved_list
def test_offsets(self):
tokenizer = self.get_tokenizer()
# fmt: off
# HEEEEE||LLL<pad>LO<unk> => HE LLO<unk>
# 1H + 5E + 2| + 3L + 1<pad> + 1L + 1O + 1<unk>
sample_ids = [11, 5, 5, 5, 5, 5, 4, 4, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98]
# fmt: on
outputs_char = tokenizer.decode(sample_ids, output_char_offsets=True)
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs_char.keys()), 2)
self.assertTrue("text" in outputs_char)
self.assertTrue("char_offsets" in outputs_char)
self.assertTrue(isinstance(outputs_char, Wav2Vec2CTCTokenizerOutput))
outputs_word = tokenizer.decode(sample_ids, output_word_offsets=True)
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs_word.keys()), 2)
self.assertTrue("text" in outputs_word)
self.assertTrue("word_offsets" in outputs_word)
self.assertTrue(isinstance(outputs_word, Wav2Vec2CTCTokenizerOutput))
outputs = tokenizer.decode(sample_ids, output_char_offsets=True, output_word_offsets=True)
# check Wav2Vec2CTCTokenizerOutput keys for both
self.assertEqual(len(outputs.keys()), 3)
self.assertTrue("text" in outputs)
self.assertTrue("char_offsets" in outputs)
self.assertTrue("word_offsets" in outputs)
self.assertTrue(isinstance(outputs, Wav2Vec2CTCTokenizerOutput))
# check that order of chars is correct and identical for both outputs
self.assertEqual("".join(self.get_from_offsets(outputs["char_offsets"], "char")), outputs.text)
self.assertEqual(
self.get_from_offsets(outputs["char_offsets"], "char"), ["H", "E", " ", "L", "L", "O", "<unk>"]
)
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"], "char"),
self.get_from_offsets(outputs_char["char_offsets"], "char"),
)
# check that order of words is correct and identical to both outputs
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"], "word")), outputs.text)
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "word"), ["HE", "LLO<unk>"])
self.assertListEqual(
self.get_from_offsets(outputs["word_offsets"], "word"),
self.get_from_offsets(outputs_word["word_offsets"], "word"),
)
# check that offsets are actually correct for char
# 0 is H, 1 is E, 6 is | (" "), 8 is 1st L, 12 is 2nd L, 13 is O, 14 is <unk>
self.assertListEqual(self.get_from_offsets(outputs["char_offsets"], "start_offset"), [0, 1, 6, 8, 12, 13, 14])
# 1 is H, 6 is E, 8 is | (" "), 11 is 1st L (note due to <pad>
# different begin of 2nd L), 13 is 2nd L, 14 is O, 15 is <unk>
self.assertListEqual(self.get_from_offsets(outputs["char_offsets"], "end_offset"), [1, 6, 8, 11, 13, 14, 15])
# check that offsets are actually correct for word
# H is at 1st position of first word, first L is at 8th position of second word
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "start_offset"), [0, 8])
# last E is at 6th position of first word, first L is at last (15th) position of second word
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"], "end_offset"), [6, 15])
def test_word_offsets_from_char_offsets(self):
tokenizer = self.get_tokenizer()
char_offsets = [
{"char": "H", "start_offset": 0, "end_offset": 1},
{"char": "I", "start_offset": 1, "end_offset": 2},
{"char": " ", "start_offset": 2, "end_offset": 3},
{"char": "L", "start_offset": 3, "end_offset": 4},
{"char": "I", "start_offset": 4, "end_offset": 5},
]
word_offsets = tokenizer._get_word_offsets(char_offsets, tokenizer.replace_word_delimiter_char)
self.assertEqual(
word_offsets,
[{"word": "HI", "start_offset": 0, "end_offset": 2}, {"word": "LI", "start_offset": 3, "end_offset": 5}],
)
# Double spaces don't get counted
char_offsets = [
{"char": " ", "start_offset": 0, "end_offset": 1},
{"char": "H", "start_offset": 1, "end_offset": 2},
{"char": "I", "start_offset": 2, "end_offset": 3},
{"char": " ", "start_offset": 3, "end_offset": 4},
{"char": " ", "start_offset": 4, "end_offset": 5},
{"char": "L", "start_offset": 5, "end_offset": 6},
{"char": "I", "start_offset": 6, "end_offset": 7},
{"char": "I", "start_offset": 7, "end_offset": 8},
{"char": " ", "start_offset": 8, "end_offset": 9},
{"char": " ", "start_offset": 9, "end_offset": 10},
]
word_offsets = tokenizer._get_word_offsets(char_offsets, tokenizer.replace_word_delimiter_char)
self.assertEqual(
word_offsets,
[{"word": "HI", "start_offset": 1, "end_offset": 3}, {"word": "LII", "start_offset": 5, "end_offset": 8}],
)
def test_offsets_batch(self):
tokenizer = self.get_tokenizer()
def check_list_tuples_equal(outputs_batch, outputs_list):
self.assertTrue(isinstance(outputs_batch, Wav2Vec2CTCTokenizerOutput))
self.assertTrue(isinstance(outputs_list[0], Wav2Vec2CTCTokenizerOutput))
# transform list to ModelOutput
outputs_batch_2 = Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in outputs_list] for k in outputs_list[0]})
self.assertListEqual(outputs_batch["text"], outputs_batch_2["text"])
def recursive_check(list_or_dict_1, list_or_dict_2):
if isinstance(list_or_dict_1, list):
[recursive_check(l1, l2) for l1, l2 in zip(list_or_dict_1, list_or_dict_2)]
self.assertEqual(list_or_dict_1, list_or_dict_2)
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch["char_offsets"], outputs_batch_2["char_offsets"])
if "word_offsets" in outputs_batch:
recursive_check(outputs_batch["word_offsets"], outputs_batch_2["word_offsets"])
# fmt: off
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
outputs_char_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True)
outputs_char = [tokenizer.decode(ids, output_char_offsets=True) for ids in sample_ids]
check_list_tuples_equal(outputs_char_batch, outputs_char)
# word
outputs_word_batch = tokenizer.batch_decode(sample_ids, output_word_offsets=True)
outputs_word = [tokenizer.decode(ids, output_word_offsets=True) for ids in sample_ids]
check_list_tuples_equal(outputs_word_batch, outputs_word)
# both
outputs_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True, output_word_offsets=True)
outputs = [tokenizer.decode(ids, output_word_offsets=True, output_char_offsets=True) for ids in sample_ids]
check_list_tuples_equal(outputs_batch, outputs)
def test_offsets_integration(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
# pred_ids correspond to the following code
# ```
# from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC
# from datasets import load_dataset
# import datasets
# import torch
# model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
#
# ds = load_dataset("common_voice", "en", split="train", streaming=True)
# ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
# ds_iter = iter(ds)
# sample = next(ds_iter)
#
# input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
# logits = model(input_values).logits
# pred_ids = torch.argmax(logits, axis=-1).cpu().tolist()
# ```
# fmt: off
pred_ids = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 11, 0, 0, 0, 22, 0, 0, 4, 4, 4, 14, 0, 0, 0, 0, 0, 8, 8, 0, 5, 5, 0, 12, 0, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 10, 0, 0, 0, 15, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 0, 0, 7, 0, 9, 0, 0, 14, 0, 0, 0, 13, 0, 7, 0, 0, 4, 4, 0, 15, 8, 8, 0, 0, 8, 0, 26, 0, 0, 4, 4, 0, 0, 15, 0, 0, 0, 0, 0, 0, 10, 0, 26, 5, 5, 0, 4, 4, 0, 0, 12, 11, 0, 0, 5, 4, 4, 4, 0, 18, 0, 0, 0, 7, 9, 9, 0, 6, 0, 12, 12, 4, 4, 0, 6, 0, 0, 8, 0, 4, 4, 4, 0, 19, 0, 0, 8, 9, 9, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 16, 16, 0, 0, 17, 5, 5, 5, 0, 4, 4, 4, 0, 0, 29, 29, 0, 0, 0, 0, 8, 11, 0, 9, 9, 0, 0, 0, 4, 4, 0, 12, 12, 0, 0, 0, 9, 0, 0, 0, 0, 0, 8, 18, 0, 0, 0, 4, 4, 0, 0, 8, 9, 0, 4, 4, 0, 6, 11, 5, 0, 4, 4, 0, 13, 13, 0, 0, 0, 10, 0, 0, 25, 0, 0, 6, 0, 4, 4, 0, 0, 0, 0, 7, 0, 0, 23, 0, 0, 4, 4, 0, 0, 0, 6, 11, 0, 5, 4, 4, 18, 0, 0, 0, 0, 0, 0, 7, 15, 0, 0, 0, 15, 15, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
# wav2vec2-base downsamples input audio by a factor of 320
# sampling rate for wav2vec2-base is 16_000
time_offset_wav2vec2_base = 320 / 16_000
expected_char_time_stamps_text = ['W', 'H', 'Y', ' ', 'D', 'O', 'E', 'S', ' ', 'M', 'I', 'L', 'I', 'S', 'A', 'N', 'D', 'R', 'A', ' ', 'L', 'O', 'O', 'K', ' ', 'L', 'I', 'K', 'E', ' ', 'S', 'H', 'E', ' ', 'W', 'A', 'N', 'T', 'S', ' ', 'T', 'O', ' ', 'C', 'O', 'N', 'S', 'U', 'M', 'E', ' ', 'J', 'O', 'H', 'N', ' ', 'S', 'N', 'O', 'W', ' ', 'O', 'N', ' ', 'T', 'H', 'E', ' ', 'R', 'I', 'V', 'T', ' ', 'A', 'P', ' ', 'T', 'H', 'E', ' ', 'W', 'A', 'L', 'L', ' ']
expected_char_time_stamps_start = [1.42, 1.44, 1.52, 1.58, 1.64, 1.76, 1.82, 1.88, 1.92, 2.26, 2.32, 2.4, 2.46, 2.54, 2.66, 2.7, 2.76, 2.84, 2.88, 2.94, 3.0, 3.02, 3.1, 3.14, 3.2, 3.28, 3.42, 3.46, 3.48, 3.54, 3.62, 3.64, 3.7, 3.72, 3.8, 3.88, 3.9, 3.96, 4.0, 4.04, 4.1, 4.16, 4.2, 4.28, 4.34, 4.36, 4.48, 4.66, 4.74, 4.76, 4.84, 4.94, 5.06, 5.08, 5.12, 5.22, 5.28, 5.38, 5.5, 5.52, 5.6, 5.68, 5.7, 5.74, 5.8, 5.82, 5.84, 5.88, 5.94, 6.04, 6.1, 6.16, 6.2, 6.32, 6.38, 6.44, 6.54, 6.56, 6.6, 6.62, 6.66, 6.8, 6.82, 6.9, 6.96]
expected_char_time_stamps_end = [1.44, 1.46, 1.54, 1.64, 1.66, 1.8, 1.86, 1.9, 2.06, 2.28, 2.34, 2.42, 2.48, 2.56, 2.68, 2.72, 2.78, 2.86, 2.9, 2.98, 3.02, 3.06, 3.12, 3.16, 3.24, 3.3, 3.44, 3.48, 3.52, 3.58, 3.64, 3.66, 3.72, 3.78, 3.82, 3.9, 3.94, 3.98, 4.04, 4.08, 4.12, 4.18, 4.26, 4.3, 4.36, 4.4, 4.52, 4.7, 4.76, 4.82, 4.9, 4.98, 5.08, 5.1, 5.16, 5.26, 5.32, 5.4, 5.52, 5.54, 5.64, 5.7, 5.72, 5.78, 5.82, 5.84, 5.86, 5.92, 5.98, 6.06, 6.12, 6.18, 6.24, 6.34, 6.4, 6.48, 6.56, 6.58, 6.62, 6.66, 6.68, 6.82, 6.84, 6.94, 7.02]
expected_word_time_stamps_text = ['WHY', 'DOES', 'MILISANDRA', 'LOOK', 'LIKE', 'SHE', 'WANTS', 'TO', 'CONSUME', 'JOHN', 'SNOW', 'ON', 'THE', 'RIVT', 'AP', 'THE', 'WALL']
expected_word_time_stamps_start = [1.42, 1.64, 2.26, 3.0, 3.28, 3.62, 3.8, 4.1, 4.28, 4.94, 5.28, 5.68, 5.8, 5.94, 6.32, 6.54, 6.66]
expected_word_time_stamps_end = [1.54, 1.9, 2.9, 3.16, 3.52, 3.72, 4.04, 4.18, 4.82, 5.16, 5.54, 5.72, 5.86, 6.18, 6.4, 6.62, 6.94]
# fmt: on
output = tokenizer.batch_decode(pred_ids, output_char_offsets=True, output_word_offsets=True)
char_offsets_text = self.get_from_offsets(output["char_offsets"][0], "char")
char_offsets_start = self.get_from_offsets(output["char_offsets"][0], "start_offset")
char_offsets_end = self.get_from_offsets(output["char_offsets"][0], "end_offset")
word_offsets_text = self.get_from_offsets(output["word_offsets"][0], "word")
word_offsets_start = self.get_from_offsets(output["word_offsets"][0], "start_offset")
word_offsets_end = self.get_from_offsets(output["word_offsets"][0], "end_offset")
# let's transform offsets to time stamps in seconds
char_time_stamps_start = [round(c * time_offset_wav2vec2_base, 2) for c in char_offsets_start]
char_time_stamps_end = [round(c * time_offset_wav2vec2_base, 2) for c in char_offsets_end]
word_time_stamps_start = [round(w * time_offset_wav2vec2_base, 2) for w in word_offsets_start]
word_time_stamps_end = [round(w * time_offset_wav2vec2_base, 2) for w in word_offsets_end]
# NOTE: you can verify the above results by checking out the dataset viewer
# on https://huggingface.co/datasets/common_voice/viewer/en/train and
# downloading / playing the sample `common_voice_en_100038.mp3`. As
# you can hear the time-stamps match more or less
self.assertListEqual(expected_char_time_stamps_text, char_offsets_text)
self.assertListEqual(expected_char_time_stamps_start, char_time_stamps_start)
self.assertListEqual(expected_char_time_stamps_end, char_time_stamps_end)
self.assertListEqual(expected_word_time_stamps_text, word_offsets_text)
self.assertListEqual(expected_word_time_stamps_start, word_time_stamps_start)
self.assertListEqual(expected_word_time_stamps_end, word_time_stamps_end)
def test_pretrained_model_lists(self):
# Wav2Vec2Model has no max model length => no testing
pass
# overwrite from test_tokenization_common
def test_add_tokens_tokenizer(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tokens = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3], tokens[-4])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-3], tokenizer.pad_token_id)
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
def test_tf_encode_plus_sent_to_model(self):
pass
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
def test_torch_encode_plus_sent_to_model(self):
pass
def test_convert_tokens_to_string_format(self):
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2vec2.
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokens = ["T", "H", "I", "S", "|", "I", "S", "|", "A", "|", "T", "E", "X", "T"]
output = tokenizer.convert_tokens_to_string(tokens)
self.assertIsInstance(output["text"], str)
def test_nested_vocab(self):
eng_vocab = {"a": 7, "b": 8}
spa_vocab = {"a": 23, "c": 88}
ita_vocab = {"a": 6, "d": 9}
nested_vocab = {"eng": eng_vocab, "spa": spa_vocab, "ita": ita_vocab}
def check_tokenizer(tokenizer, check_ita_first=False):
if check_ita_first:
self.assertEqual(tokenizer.decode([6, 9, 9]), "ad")
self.assertEqual(tokenizer.encoder, ita_vocab)
tokenizer.set_target_lang("eng")
self.assertEqual(tokenizer.encoder, eng_vocab)
self.assertEqual(tokenizer.decode([7, 8, 7]), "aba")
tokenizer.set_target_lang("spa")
self.assertEqual(tokenizer.decode([23, 88, 23]), "aca")
self.assertEqual(tokenizer.encoder, spa_vocab)
tokenizer.set_target_lang("eng")
self.assertEqual(tokenizer.encoder, eng_vocab)
self.assertEqual(tokenizer.decode([7, 7, 8]), "ab")
tokenizer.set_target_lang("ita")
self.assertEqual(tokenizer.decode([6, 9, 9]), "ad")
self.assertEqual(tokenizer.encoder, ita_vocab)
with tempfile.TemporaryDirectory() as tempdir:
tempfile_path = os.path.join(tempdir, "vocab.json")
with open(tempfile_path, "w") as temp_file:
json.dump(nested_vocab, temp_file)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(tempdir, target_lang="eng")
check_tokenizer(tokenizer)
with tempfile.TemporaryDirectory() as tempdir:
# should have saved target lang as "ita" since it was last one
tokenizer.save_pretrained(tempdir)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(tempdir)
self.assertEqual(tokenizer.target_lang, "ita")
check_tokenizer(tokenizer, check_ita_first=True)
|