Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch MobileViTV2 model. """ | |
import inspect | |
import unittest | |
from transformers import MobileViTV2Config | |
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model | |
from transformers.models.mobilevitv2.modeling_mobilevitv2 import ( | |
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
make_divisible, | |
) | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import MobileViTImageProcessor | |
class MobileViTV2ConfigTester(ConfigTester): | |
def create_and_test_config_common_properties(self): | |
config = self.config_class(**self.inputs_dict) | |
self.parent.assertTrue(hasattr(config, "width_multiplier")) | |
class MobileViTV2ModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=64, | |
patch_size=2, | |
num_channels=3, | |
hidden_act="swish", | |
conv_kernel_size=3, | |
output_stride=32, | |
classifier_dropout_prob=0.1, | |
initializer_range=0.02, | |
is_training=True, | |
use_labels=True, | |
num_labels=10, | |
scope=None, | |
width_multiplier=0.25, | |
ffn_dropout=0.0, | |
attn_dropout=0.0, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.last_hidden_size = make_divisible(512 * width_multiplier, divisor=8) | |
self.hidden_act = hidden_act | |
self.conv_kernel_size = conv_kernel_size | |
self.output_stride = output_stride | |
self.classifier_dropout_prob = classifier_dropout_prob | |
self.use_labels = use_labels | |
self.is_training = is_training | |
self.num_labels = num_labels | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.width_multiplier = width_multiplier | |
self.ffn_dropout_prob = ffn_dropout | |
self.attn_dropout_prob = attn_dropout | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
pixel_labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels, pixel_labels | |
def get_config(self): | |
return MobileViTV2Config( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_act=self.hidden_act, | |
conv_kernel_size=self.conv_kernel_size, | |
output_stride=self.output_stride, | |
classifier_dropout_prob=self.classifier_dropout_prob, | |
initializer_range=self.initializer_range, | |
width_multiplier=self.width_multiplier, | |
ffn_dropout=self.ffn_dropout_prob, | |
attn_dropout=self.attn_dropout_prob, | |
base_attn_unit_dims=[16, 24, 32], | |
n_attn_blocks=[1, 1, 2], | |
aspp_out_channels=32, | |
) | |
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): | |
model = MobileViTV2Model(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, | |
( | |
self.batch_size, | |
self.last_hidden_size, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = MobileViTV2ForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = MobileViTV2ForSemanticSegmentation(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.logits.shape, | |
( | |
self.batch_size, | |
self.num_labels, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
result = model(pixel_values, labels=pixel_labels) | |
self.parent.assertEqual( | |
result.logits.shape, | |
( | |
self.batch_size, | |
self.num_labels, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels, pixel_labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViTV2 does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
(MobileViTV2Model, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": MobileViTV2Model, | |
"image-classification": MobileViTV2ForImageClassification, | |
"image-segmentation": MobileViTV2ForSemanticSegmentation, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = MobileViTV2ModelTester(self) | |
self.config_tester = MobileViTV2ConfigTester(self, config_class=MobileViTV2Config, has_text_modality=False) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_attention_outputs(self): | |
pass | |
def test_multi_gpu_data_parallel_forward(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_stages = 5 | |
self.assertEqual(len(hidden_states), expected_num_stages) | |
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) | |
# with the width and height being successively divided by 2. | |
divisor = 2 | |
for i in range(len(hidden_states)): | |
self.assertListEqual( | |
list(hidden_states[i].shape[-2:]), | |
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], | |
) | |
divisor *= 2 | |
self.assertEqual(self.model_tester.output_stride, divisor // 2) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_for_semantic_segmentation(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = MobileViTV2Model.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class MobileViTV2ModelIntegrationTest(unittest.TestCase): | |
def default_image_processor(self): | |
return ( | |
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") | |
if is_vision_available() | |
else None | |
) | |
def test_inference_image_classification_head(self): | |
model = MobileViTV2ForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to( | |
torch_device | |
) | |
image_processor = self.default_image_processor | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
def test_inference_semantic_segmentation(self): | |
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") | |
model = model.to(torch_device) | |
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 21, 32, 32)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[ | |
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], | |
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], | |
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], | |
], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) | |
def test_post_processing_semantic_segmentation(self): | |
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") | |
model = model.to(torch_device) | |
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.logits = outputs.logits.detach().cpu() | |
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)]) | |
expected_shape = torch.Size((50, 60)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) | |
expected_shape = torch.Size((32, 32)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |