Spaces:
Paused
Paused
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import shutil | |
import tempfile | |
import unittest | |
from transformers import ( | |
SPIECE_UNDERLINE, | |
AddedToken, | |
BatchEncoding, | |
NllbTokenizer, | |
NllbTokenizerFast, | |
is_torch_available, | |
) | |
from transformers.testing_utils import ( | |
get_tests_dir, | |
nested_simplify, | |
require_sentencepiece, | |
require_tokenizers, | |
require_torch, | |
) | |
from ...test_tokenization_common import TokenizerTesterMixin | |
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") | |
if is_torch_available(): | |
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right | |
EN_CODE = 256047 | |
RO_CODE = 256145 | |
class NllbTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = NllbTokenizer | |
rust_tokenizer_class = NllbTokenizerFast | |
test_rust_tokenizer = True | |
test_sentencepiece = True | |
from_pretrained_kwargs = {} | |
def setUp(self): | |
super().setUp() | |
# We have a SentencePiece fixture for testing | |
tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True) | |
tokenizer.save_pretrained(self.tmpdirname) | |
def test_full_tokenizer(self): | |
tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True) | |
tokens = tokenizer.tokenize("This is a test") | |
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) | |
self.assertListEqual( | |
tokenizer.convert_tokens_to_ids(tokens), | |
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], | |
) | |
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") | |
self.assertListEqual( | |
tokens, | |
[ | |
SPIECE_UNDERLINE + "I", | |
SPIECE_UNDERLINE + "was", | |
SPIECE_UNDERLINE + "b", | |
"or", | |
"n", | |
SPIECE_UNDERLINE + "in", | |
SPIECE_UNDERLINE + "", | |
"9", | |
"2", | |
"0", | |
"0", | |
"0", | |
",", | |
SPIECE_UNDERLINE + "and", | |
SPIECE_UNDERLINE + "this", | |
SPIECE_UNDERLINE + "is", | |
SPIECE_UNDERLINE + "f", | |
"al", | |
"s", | |
"é", | |
".", | |
], | |
) | |
ids = tokenizer.convert_tokens_to_ids(tokens) | |
self.assertListEqual( | |
ids, | |
[ | |
value + tokenizer.fairseq_offset | |
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] | |
], | |
) | |
back_tokens = tokenizer.convert_ids_to_tokens(ids) | |
self.assertListEqual( | |
back_tokens, | |
[ | |
SPIECE_UNDERLINE + "I", | |
SPIECE_UNDERLINE + "was", | |
SPIECE_UNDERLINE + "b", | |
"or", | |
"n", | |
SPIECE_UNDERLINE + "in", | |
SPIECE_UNDERLINE + "", | |
"<unk>", | |
"2", | |
"0", | |
"0", | |
"0", | |
",", | |
SPIECE_UNDERLINE + "and", | |
SPIECE_UNDERLINE + "this", | |
SPIECE_UNDERLINE + "is", | |
SPIECE_UNDERLINE + "f", | |
"al", | |
"s", | |
"<unk>", | |
".", | |
], | |
) | |
# overwrite from test_tokenization_common to speed up test | |
def test_save_pretrained(self): | |
self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
tmpdirname2 = tempfile.mkdtemp() | |
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) | |
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) | |
# Checks it save with the same files + the tokenizer.json file for the fast one | |
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) | |
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) | |
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) | |
# Checks everything loads correctly in the same way | |
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) | |
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) | |
# Check special tokens are set accordingly on Rust and Python | |
for key in tokenizer_pp.special_tokens_map: | |
self.assertTrue(hasattr(tokenizer_rp, key)) | |
shutil.rmtree(tmpdirname2) | |
# Save tokenizer rust, legacy_format=True | |
tmpdirname2 = tempfile.mkdtemp() | |
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) | |
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) | |
# Checks it save with the same files | |
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) | |
# Checks everything loads correctly in the same way | |
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) | |
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) | |
# Check special tokens are set accordingly on Rust and Python | |
for key in tokenizer_pp.special_tokens_map: | |
self.assertTrue(hasattr(tokenizer_rp, key)) | |
shutil.rmtree(tmpdirname2) | |
# Save tokenizer rust, legacy_format=False | |
tmpdirname2 = tempfile.mkdtemp() | |
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) | |
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) | |
# Checks it saved the tokenizer.json file | |
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) | |
# Checks everything loads correctly in the same way | |
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) | |
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) | |
# Check special tokens are set accordingly on Rust and Python | |
for key in tokenizer_pp.special_tokens_map: | |
self.assertTrue(hasattr(tokenizer_rp, key)) | |
shutil.rmtree(tmpdirname2) | |
def test_prepare_seq2seq_batch(self): | |
if not self.test_seq2seq: | |
return | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
# Longer text that will definitely require truncation. | |
src_text = [ | |
" UN Chief Says There Is No Military Solution in Syria", | |
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" | |
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" | |
" will only worsen the violence and misery for millions of people.", | |
] | |
tgt_text = [ | |
"Şeful ONU declară că nu există o soluţie militară în Siria", | |
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" | |
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' | |
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", | |
] | |
try: | |
batch = tokenizer.prepare_seq2seq_batch( | |
src_texts=src_text, | |
tgt_texts=tgt_text, | |
max_length=3, | |
max_target_length=10, | |
return_tensors="pt", | |
src_lang="eng_Latn", | |
tgt_lang="ron_Latn", | |
) | |
except NotImplementedError: | |
return | |
self.assertEqual(batch.input_ids.shape[1], 3) | |
self.assertEqual(batch.labels.shape[1], 10) | |
# max_target_length will default to max_length if not specified | |
batch = tokenizer.prepare_seq2seq_batch( | |
src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt" | |
) | |
self.assertEqual(batch.input_ids.shape[1], 3) | |
self.assertEqual(batch.labels.shape[1], 3) | |
batch_encoder_only = tokenizer.prepare_seq2seq_batch( | |
src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt" | |
) | |
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) | |
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) | |
self.assertNotIn("decoder_input_ids", batch_encoder_only) | |
def test_save_slow_from_fast_and_reload_fast(self): | |
pass | |
def test_special_tokens_initialization(self): | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
added_tokens = [AddedToken("<special>", lstrip=True)] | |
tokenizer_r = self.rust_tokenizer_class.from_pretrained( | |
pretrained_name, additional_special_tokens=added_tokens, **kwargs | |
) | |
r_output = tokenizer_r.encode("Hey this is a <special> token") | |
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] | |
self.assertTrue(special_token_id in r_output) | |
if self.test_slow_tokenizer: | |
tokenizer_cr = self.rust_tokenizer_class.from_pretrained( | |
pretrained_name, | |
additional_special_tokens=added_tokens, | |
**kwargs, # , from_slow=True <- unfortunately too slow to convert | |
) | |
tokenizer_p = self.tokenizer_class.from_pretrained( | |
pretrained_name, additional_special_tokens=added_tokens, **kwargs | |
) | |
p_output = tokenizer_p.encode("Hey this is a <special> token") | |
cr_output = tokenizer_cr.encode("Hey this is a <special> token") | |
self.assertEqual(p_output, r_output) | |
self.assertEqual(cr_output, r_output) | |
self.assertTrue(special_token_id in p_output) | |
self.assertTrue(special_token_id in cr_output) | |
class NllbDistilledIntegrationTest(unittest.TestCase): | |
checkpoint_name = "facebook/nllb-200-distilled-600M" | |
src_text = [ | |
" UN Chief Says There Is No Military Solution in Syria", | |
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", | |
] | |
tgt_text = [ | |
"Şeful ONU declară că nu există o soluţie militară în Siria", | |
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" | |
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' | |
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", | |
] | |
expected_src_tokens = [ | |
256047, | |
16297, | |
134408, | |
8165, | |
248066, | |
14734, | |
950, | |
1135, | |
105721, | |
3573, | |
83, | |
27352, | |
108, | |
49486, | |
2, | |
] | |
def setUpClass(cls): | |
cls.tokenizer: NllbTokenizer = NllbTokenizer.from_pretrained( | |
cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn" | |
) | |
cls.pad_token_id = 1 | |
return cls | |
def test_language_codes(self): | |
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"], 256001) | |
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"], 256002) | |
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"], 256057) | |
def test_enro_tokenizer_batch_encode_plus(self): | |
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] | |
self.assertListEqual(self.expected_src_tokens, ids) | |
def test_enro_tokenizer_decode_ignores_language_codes(self): | |
self.assertIn(RO_CODE, self.tokenizer.all_special_ids) | |
# fmt: off | |
generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] | |
# fmt: on | |
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) | |
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) | |
self.assertEqual(result, expected_romanian) | |
self.assertNotIn(self.tokenizer.eos_token, result) | |
def test_enro_tokenizer_truncation(self): | |
src_text = ["this is gunna be a long sentence " * 20] | |
assert isinstance(src_text[0], str) | |
desired_max_length = 10 | |
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] | |
self.assertEqual(ids[-1], 2) | |
self.assertEqual(ids[0], EN_CODE) | |
self.assertEqual(len(ids), desired_max_length) | |
def test_mask_token(self): | |
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [256203, 3]) | |
def test_special_tokens_unaffacted_by_save_load(self): | |
tmpdirname = tempfile.mkdtemp() | |
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids | |
self.tokenizer.save_pretrained(tmpdirname) | |
new_tok = NllbTokenizer.from_pretrained(tmpdirname) | |
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens) | |
def test_enro_tokenizer_prepare_batch(self): | |
batch = self.tokenizer( | |
self.src_text, | |
text_target=self.tgt_text, | |
padding=True, | |
truncation=True, | |
max_length=len(self.expected_src_tokens), | |
return_tensors="pt", | |
) | |
batch["decoder_input_ids"] = shift_tokens_right( | |
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["ron_Latn"] | |
) | |
self.assertIsInstance(batch, BatchEncoding) | |
self.assertEqual((2, 15), batch.input_ids.shape) | |
self.assertEqual((2, 15), batch.attention_mask.shape) | |
result = batch.input_ids.tolist()[0] | |
self.assertListEqual(self.expected_src_tokens, result) | |
self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS | |
# Test that special tokens are reset | |
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE]) | |
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) | |
def test_seq2seq_max_length(self): | |
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt") | |
targets = self.tokenizer( | |
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt" | |
) | |
labels = targets["input_ids"] | |
batch["decoder_input_ids"] = shift_tokens_right( | |
labels, | |
self.tokenizer.pad_token_id, | |
decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], | |
) | |
self.assertEqual(batch.input_ids.shape[1], 3) | |
self.assertEqual(batch.decoder_input_ids.shape[1], 10) | |
def test_tokenizer_translation(self): | |
inputs = self.tokenizer._build_translation_inputs( | |
"A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn" | |
) | |
self.assertEqual( | |
nested_simplify(inputs), | |
{ | |
# A, test, EOS, en_XX | |
"input_ids": [[256047, 70, 7356, 2]], | |
"attention_mask": [[1, 1, 1, 1]], | |
# ar_AR | |
"forced_bos_token_id": 256057, | |
}, | |
) | |
def test_legacy_behaviour(self): | |
self.tokenizer.legacy_behaviour = True | |
inputs = self.tokenizer( | |
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" | |
) | |
self.assertEqual( | |
inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] | |
) | |
self.tokenizer.legacy_behaviour = False | |
inputs = self.tokenizer( | |
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" | |
) | |
self.assertEqual( | |
inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] | |
) | |