Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch ViLT model. """ | |
import unittest | |
from datasets import load_dataset | |
from packaging import version | |
from transformers import ViltConfig, is_torch_available, is_vision_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MODEL_MAPPING, | |
ViltForImageAndTextRetrieval, | |
ViltForImagesAndTextClassification, | |
ViltForMaskedLM, | |
ViltForQuestionAnswering, | |
ViltForTokenClassification, | |
ViltModel, | |
) | |
from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
import PIL | |
from PIL import Image | |
from transformers import ViltProcessor | |
class ViltModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
modality_type_vocab_size=2, | |
add_multiple_images=False, | |
num_images=-1, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.scope = scope | |
self.modality_type_vocab_size = modality_type_vocab_size | |
self.add_multiple_images = add_multiple_images | |
self.num_images = num_images | |
# we set the expected sequence length (which is used in several tests) | |
# this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token | |
self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
if self.add_multiple_images: | |
pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size]) | |
else: | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
if self.use_labels: | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
config = self.get_config() | |
return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels) | |
def get_config(self): | |
return ViltConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
num_labels=self.num_labels, | |
modality_type_vocab_size=self.modality_type_vocab_size, | |
num_images=self.num_images, | |
) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
pixel_values, | |
token_labels, | |
): | |
model = ViltModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) | |
result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) | |
result = model(input_ids, pixel_values=pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) | |
) | |
def create_and_check_for_token_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
pixel_values, | |
token_labels, | |
): | |
model = ViltForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) | |
result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) | |
result = model(input_ids, pixel_values=pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
pixel_values, | |
token_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
"pixel_values": pixel_values, | |
} | |
return config, inputs_dict | |
def prepare_pixel_values(self): | |
return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
class ViltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
ViltModel, | |
ViltForQuestionAnswering, | |
ViltForImageAndTextRetrieval, | |
ViltForMaskedLM, | |
ViltForTokenClassification, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"feature-extraction": ViltModel, "visual-question-answering": ViltForQuestionAnswering} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_headmasking = False | |
test_torchscript = False | |
model_split_percents = [0.5, 0.8, 0.9] | |
# ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "ViltForQuestionAnswering": | |
inputs_dict["labels"] = torch.zeros( | |
self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device | |
) | |
elif model_class.__name__ in ["ViltForMaskedLM", "ViltForTokenClassification"]: | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
) | |
elif model_class.__name__ == "ViltForImagesAndTextClassification": | |
inputs_dict["labels"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = ViltModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
config.modality_type_vocab_size = 3 | |
# ViltForImageAndTextRetrieval doesn't support training for now | |
if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]: | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
for k, v in inputs.items(): | |
print(k, v.shape) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.use_cache = False | |
config.return_dict = True | |
# ViltForImageAndTextRetrieval doesn't support training for now | |
if ( | |
model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval] | |
or not model_class.supports_gradient_checkpointing | |
): | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.gradient_checkpointing_enable() | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_save_load(self): | |
pass | |
def test_determinism(self): | |
pass | |
def test_model_outputs_equivalence(self): | |
pass | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
seq_len = getattr(self.model_tester, "expected_seq_len", None) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
# attentions are a list of length num_images | |
# each element contains the attentions of a particular image index | |
self.assertEqual(len(attentions), self.model_tester.num_images) | |
self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) | |
else: | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
# attentions are a list of length num_images | |
# each element contains the attentions of a particular image index | |
self.assertEqual(len(attentions), self.model_tester.num_images) | |
self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) | |
else: | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
self.assertListEqual( | |
list(attentions[0][0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
else: | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(out_len + 1, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
self.assertEqual(len(self_attentions), self.model_tester.num_images) | |
self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0][0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
else: | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
# hidden_states are a list of length num_images | |
# each element contains the hidden states of a particular image index | |
self.assertEqual(len(hidden_states), self.model_tester.num_images) | |
self.assertEqual(len(hidden_states[0]), expected_num_layers) | |
else: | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
seq_length = self.model_tester.expected_seq_len | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
self.assertListEqual( | |
list(hidden_states[0][0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
else: | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
print("Model class:", model_class) | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_retain_grad_hidden_states_attentions(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**inputs) | |
output = outputs[0] | |
# Encoder-/Decoder-only models | |
hidden_states = outputs.hidden_states[0] | |
attentions = outputs.attentions[0] | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
# hidden_states are a list of length num_images | |
# each element contains the hidden states of a particular image index | |
hidden_states[0].retain_grad() | |
attentions[0].retain_grad() | |
else: | |
hidden_states.retain_grad() | |
attentions.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
if model_class.__name__ == "ViltForImagesAndTextClassification": | |
# hidden_states are a list of length num_images | |
# each element contains the hidden states of a particular image index | |
self.assertIsNotNone(hidden_states[0].grad) | |
self.assertIsNotNone(attentions[0].grad) | |
else: | |
self.assertIsNotNone(hidden_states.grad) | |
self.assertIsNotNone(attentions.grad) | |
def test_model_from_pretrained(self): | |
for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ViltModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase): | |
all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else () | |
def setUp(self): | |
self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2) | |
self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) | |
def test_model(self): | |
pass | |
def test_for_token_classification(self): | |
pass | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class ViltModelIntegrationTest(unittest.TestCase): | |
def default_processor(self): | |
return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None | |
def test_inference_masked_lm(self): | |
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device) | |
processor = self.default_processor | |
image = prepare_img() | |
text = "a bunch of [MASK] laying on a [MASK]." | |
inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size([1, 11, 30522]) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4)) | |
# verify masked token prediction equals "cats" | |
predicted_id = outputs.logits[0, 4, :].argmax(-1).item() | |
assert processor.decode([predicted_id]) == "cats" | |
def test_inference_visual_question_answering(self): | |
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device) | |
processor = self.default_processor | |
image = prepare_img() | |
text = "How many cats are there?" | |
inputs = processor(image, text, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 3129)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
# compute loss | |
vqa_labels = [[2, 3, 155, 800]] | |
vqa_scores = [[1.0, 0.3, 0.3, 0.3]] | |
labels = torch.zeros(1, model.config.num_labels).to(torch_device) | |
for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)): | |
for l, s in zip(labels_example, scores_example): | |
labels[i, l] = s | |
# forward pass | |
outputs = model(**inputs, labels=labels) | |
# verify we have a positive loss | |
self.assertTrue(outputs.loss > 0) | |
def test_inference_natural_language_visual_reasoning(self): | |
model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to( | |
torch_device | |
) | |
processor = self.default_processor | |
dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test") | |
image1 = Image.open(dataset[0]["file"]).convert("RGB") | |
image2 = Image.open(dataset[1]["file"]).convert("RGB") | |
text = ( | |
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are" | |
" standing." | |
) | |
encoding_1 = processor(image1, text, return_tensors="pt") | |
encoding_2 = processor(image2, text, return_tensors="pt") | |
pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1) | |
# forward pass | |
outputs = model( | |
input_ids=encoding_1.input_ids.to(torch_device), | |
pixel_values=pixel_values.to(torch_device), | |
) | |
# verify the logits | |
expected_shape = torch.Size([1, 2]) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") | |
if is_pillow_less_than_9: | |
expected_slice = torch.tensor( | |
[-2.4013, 2.9342], | |
device=torch_device, | |
) | |
else: | |
expected_slice = torch.tensor( | |
[-2.3713, 2.9168], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |