Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch VITS model. """ | |
import copy | |
import os | |
import tempfile | |
import unittest | |
from typing import Dict, List, Tuple | |
import numpy as np | |
from transformers import PretrainedConfig, VitsConfig | |
from transformers.testing_utils import ( | |
is_flaky, | |
is_torch_available, | |
require_torch, | |
require_torch_multi_gpu, | |
slow, | |
torch_device, | |
) | |
from transformers.trainer_utils import set_seed | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
global_rng, | |
ids_tensor, | |
random_attention_mask, | |
) | |
if is_torch_available(): | |
import torch | |
from transformers import VitsModel, VitsTokenizer | |
CONFIG_NAME = "config.json" | |
GENERATION_CONFIG_NAME = "generation_config.json" | |
def _config_zero_init(config): | |
configs_no_init = copy.deepcopy(config) | |
for key in configs_no_init.__dict__.keys(): | |
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: | |
setattr(configs_no_init, key, 1e-10) | |
if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): | |
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) | |
setattr(configs_no_init, key, no_init_subconfig) | |
return configs_no_init | |
class VitsModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
seq_length=7, | |
is_training=False, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=2, | |
intermediate_size=64, | |
flow_size=16, | |
vocab_size=38, | |
spectrogram_bins=8, | |
duration_predictor_num_flows=2, | |
duration_predictor_filter_channels=16, | |
prior_encoder_num_flows=2, | |
upsample_initial_channel=16, | |
upsample_rates=[8, 2], | |
upsample_kernel_sizes=[16, 4], | |
resblock_kernel_sizes=[3, 7], | |
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.flow_size = flow_size | |
self.vocab_size = vocab_size | |
self.spectrogram_bins = spectrogram_bins | |
self.duration_predictor_num_flows = duration_predictor_num_flows | |
self.duration_predictor_filter_channels = duration_predictor_filter_channels | |
self.prior_encoder_num_flows = prior_encoder_num_flows | |
self.upsample_initial_channel = upsample_initial_channel | |
self.upsample_rates = upsample_rates | |
self.upsample_kernel_sizes = upsample_kernel_sizes | |
self.resblock_kernel_sizes = resblock_kernel_sizes | |
self.resblock_dilation_sizes = resblock_dilation_sizes | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2) | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
} | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_config(self): | |
return VitsConfig( | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
ffn_dim=self.intermediate_size, | |
flow_size=self.flow_size, | |
vocab_size=self.vocab_size, | |
spectrogram_bins=self.spectrogram_bins, | |
duration_predictor_num_flows=self.duration_predictor_num_flows, | |
prior_encoder_num_flows=self.prior_encoder_num_flows, | |
duration_predictor_filter_channels=self.duration_predictor_filter_channels, | |
posterior_encoder_num_wavenet_layers=self.num_hidden_layers, | |
upsample_initial_channel=self.upsample_initial_channel, | |
upsample_rates=self.upsample_rates, | |
upsample_kernel_sizes=self.upsample_kernel_sizes, | |
resblock_kernel_sizes=self.resblock_kernel_sizes, | |
resblock_dilation_sizes=self.resblock_dilation_sizes, | |
) | |
def create_and_check_model_forward(self, config, inputs_dict): | |
model = VitsModel(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
result = model(input_ids, attention_mask=attention_mask) | |
self.parent.assertEqual((self.batch_size, 624), result.waveform.shape) | |
class VitsModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (VitsModel,) if is_torch_available() else () | |
is_encoder_decoder = False | |
test_pruning = False | |
test_headmasking = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
test_torchscript = False | |
has_attentions = False | |
input_name = "input_ids" | |
def setUp(self): | |
self.model_tester = VitsModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=VitsConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model_forward(self): | |
set_seed(12345) | |
global_rng.seed(12345) | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_forward(*config_and_inputs) | |
# override to force all elements of the batch to have the same sequence length across GPUs | |
def test_multi_gpu_data_parallel_forward(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.use_stochastic_duration_prediction = False | |
# move input tensors to cuda:O | |
for key, value in inputs_dict.items(): | |
if torch.is_tensor(value): | |
# make all elements of the batch the same -> ensures the output seq lengths are the same for DP | |
value[1:] = value[0] | |
inputs_dict[key] = value.to(0) | |
for model_class in self.all_model_classes: | |
model = model_class(config=config) | |
model.to(0) | |
model.eval() | |
# Wrap model in nn.DataParallel | |
model = torch.nn.DataParallel(model) | |
set_seed(555) | |
with torch.no_grad(): | |
_ = model(**self._prepare_for_class(inputs_dict, model_class)).waveform | |
def test_determinism(self): | |
pass | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
uniform_init_parms = [ | |
"emb_rel_k", | |
"emb_rel_v", | |
"conv_1", | |
"conv_2", | |
"conv_pre", | |
"conv_post", | |
"conv_proj", | |
"conv_dds", | |
"project", | |
"wavenet.in_layers", | |
"wavenet.res_skip_layers", | |
"upsampler", | |
"resblocks", | |
] | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
if any(x in name for x in uniform_init_parms): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
# override since the model is not deterministic, so we need to set the seed for each forward pass | |
def test_model_outputs_equivalence(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def set_nan_tensor_to_zero(t): | |
t[t != t] = 0 | |
return t | |
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): | |
with torch.no_grad(): | |
set_seed(0) | |
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) | |
set_seed(0) | |
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() | |
def recursive_check(tuple_object, dict_object): | |
if isinstance(tuple_object, (List, Tuple)): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif isinstance(tuple_object, Dict): | |
for tuple_iterable_value, dict_iterable_value in zip( | |
tuple_object.values(), dict_object.values() | |
): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif tuple_object is None: | |
return | |
else: | |
self.assertTrue( | |
torch.allclose( | |
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
), | |
msg=( | |
"Tuple and dict output are not equal. Difference:" | |
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
), | |
) | |
recursive_check(tuple_output, dict_output) | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
if self.has_attentions: | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence( | |
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} | |
) | |
# override since the model is not deterministic, so we need to set the seed for each forward pass | |
def test_save_load(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_save_load(out1, out2): | |
# make sure we don't have nans | |
out_2 = out2.cpu().numpy() | |
out_2[np.isnan(out_2)] = 0 | |
out_1 = out1.cpu().numpy() | |
out_1[np.isnan(out_1)] = 0 | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
set_seed(0) | |
first = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
# the config file (and the generation config file, if it can generate) should be saved | |
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) | |
self.assertEqual( | |
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) | |
) | |
model = model_class.from_pretrained(tmpdirname) | |
model.to(torch_device) | |
with torch.no_grad(): | |
set_seed(0) | |
second = model(**self._prepare_for_class(inputs_dict, model_class))[0] | |
if isinstance(first, tuple) and isinstance(second, tuple): | |
for tensor1, tensor2 in zip(first, second): | |
check_save_load(tensor1, tensor2) | |
else: | |
check_save_load(first, second) | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "weight_g") and module.weight_g is not None: | |
module.weight_g.data.fill_(3) | |
if hasattr(module, "weight_v") and module.weight_v is not None: | |
module.weight_v.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
class VitsModelIntegrationTests(unittest.TestCase): | |
def test_forward(self): | |
# GPU gives different results than CPU | |
torch_device = "cpu" | |
model = VitsModel.from_pretrained("facebook/mms-tts-eng") | |
model.to(torch_device) | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") | |
set_seed(555) # make deterministic | |
input_text = "Mister quilter is the apostle of the middle classes and we are glad to welcome his gospel!" | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device) | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
self.assertEqual(outputs.waveform.shape, (1, 87040)) | |
# fmt: off | |
EXPECTED_LOGITS = torch.tensor( | |
[ | |
-0.0042, 0.0176, 0.0354, 0.0504, 0.0621, 0.0777, 0.0980, 0.1224, | |
0.1475, 0.1679, 0.1817, 0.1832, 0.1713, 0.1542, 0.1384, 0.1256, | |
0.1147, 0.1066, 0.1026, 0.0958, 0.0823, 0.0610, 0.0340, 0.0022, | |
-0.0337, -0.0677, -0.0969, -0.1178, -0.1311, -0.1363 | |
] | |
) | |
# fmt: on | |
self.assertTrue(torch.allclose(outputs.waveform[0, 10000:10030].cpu(), EXPECTED_LOGITS, atol=1e-4)) | |