Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for the VITS tokenizer.""" | |
import json | |
import os | |
import shutil | |
import tempfile | |
import unittest | |
from transformers import VitsTokenizer | |
from transformers.models.vits.tokenization_vits import VOCAB_FILES_NAMES | |
from transformers.testing_utils import slow | |
from ...test_tokenization_common import TokenizerTesterMixin | |
class VitsTokenizerTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = VitsTokenizer | |
test_rust_tokenizer = False | |
def setUp(self): | |
super().setUp() | |
vocab = ( | |
"k ' z y u d h e s w – 3 c p - 1 j m i X f l o 0 b r a 4 2 n _ x v t q 5 6 g ț ţ < > | <pad> <unk>".split( | |
" " | |
) | |
) | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
vocab_tokens[" "] = vocab_tokens["X"] | |
del vocab_tokens["X"] | |
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>"} | |
self.tmpdirname = tempfile.mkdtemp() | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(vocab_tokens) + "\n") | |
def get_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
kwargs["phonemize"] = False | |
kwargs["normalize"] = False | |
return VitsTokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5): | |
txt = "beyonce lives in los angeles" | |
ids = tokenizer.encode(txt, add_special_tokens=False) | |
return txt, ids | |
def test_add_tokens_tokenizer(self): | |
pass | |
def test_encode_decode_with_spaces(self): | |
pass | |
def test_pretokenized_inputs(self): | |
pass | |
def test_save_and_load_tokenizer(self): | |
# safety check on max_len default value so we are sure the test works | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
self.assertNotEqual(tokenizer.model_max_length, 42) | |
# Now let's start the test | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
# Isolate this from the other tests because we save additional tokens/etc | |
tmpdirname = tempfile.mkdtemp() | |
sample_text = " He is very happy, UNwant\u00E9d,running" | |
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) | |
before_vocab = tokenizer.get_vocab() | |
tokenizer.save_pretrained(tmpdirname) | |
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) | |
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) | |
after_vocab = after_tokenizer.get_vocab() | |
self.assertListEqual(before_tokens, after_tokens) | |
self.assertDictEqual(before_vocab, after_vocab) | |
shutil.rmtree(tmpdirname) | |
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): | |
pass | |
def test_ron_normalization(self): | |
tokenizer = self.get_tokenizer() | |
tokenizer.language = "ron" | |
sequences = ["vițs"] | |
normalized_sequences = ["viţs"] | |
encoded_ids = tokenizer(sequences, normalize=True)["input_ids"] | |
decoded_sequences = tokenizer.batch_decode(encoded_ids) | |
self.assertEqual(normalized_sequences, decoded_sequences) | |
def test_normalization(self): | |
tokenizer = self.get_tokenizer() | |
sequences = ["VITS; is a model for t-t-s!"] | |
normalized_sequences = ["vits is a model for t-t-s"] | |
unnormalized_sequences = [ | |
"<unk><unk><unk><unk><unk> is a model for t-t-s<unk>" | |
] # can't handle upper-case or certain punctuations | |
encoded_normalized_ids = tokenizer(sequences, normalize=True) | |
encoded_unnormalized_ids = tokenizer(sequences, normalize=False) | |
decoded_normalized_sequences = [ | |
tokenizer.decode(seq, skip_special_tokens=False) for seq in encoded_normalized_ids["input_ids"] | |
] | |
decoded_unnormalized_sequences = [ | |
tokenizer.decode(seq, skip_special_tokens=False) for seq in encoded_unnormalized_ids["input_ids"] | |
] | |
self.assertEqual(decoded_normalized_sequences, normalized_sequences) | |
self.assertEqual(decoded_unnormalized_sequences, unnormalized_sequences) | |
def test_tokenizer_integration(self): | |
sequences = [ | |
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " | |
"conditioning on both left and right context in all layers.", | |
"The quick brown fox! Jumps over the lazy dog...", | |
"We use k as our padding token", | |
] | |
normalized_sequences = [ | |
"bert is designed to pre-train deep bidirectional representations from unlabeled text by jointly " | |
"conditioning on both left and right context in all layers", | |
"the quick brown fox jumps over the lazy dog", | |
"we use k as our padding token", | |
] | |
# fmt: off | |
expected_encoding = { | |
'input_ids': [ | |
[0, 24, 0, 7, 0, 25, 0, 33, 0, 19, 0, 18, 0, 8, 0, 19, 0, 5, 0, 7, 0, 8, 0, 18, 0, 37, 0, 29, 0, 7, 0, 5, 0, 19, 0, 33, 0, 22, 0, 19, 0, 13, 0, 25, 0, 7, 0, 14, 0, 33, 0, 25, 0, 26, 0, 18, 0, 29, 0, 19, 0, 5, 0, 7, 0, 7, 0, 13, 0, 19, 0, 24, 0, 18, 0, 5, 0, 18, 0, 25, 0, 7, 0, 12, 0, 33, 0, 18, 0, 22, 0, 29, 0, 26, 0, 21, 0, 19, 0, 25, 0, 7, 0, 13, 0, 25, 0, 7, 0, 8, 0, 7, 0, 29, 0, 33, 0, 26, 0, 33, 0, 18, 0, 22, 0, 29, 0, 8, 0, 19, 0, 20, 0, 25, 0, 22, 0, 17, 0, 19, 0, 4, 0, 29, 0, 21, 0, 26, 0, 24, 0, 7, 0, 21, 0, 7, 0, 5, 0, 19, 0, 33, 0, 7, 0, 31, 0, 33, 0, 19, 0, 24, 0, 3, 0, 19, 0, 16, 0, 22, 0, 18, 0, 29, 0, 33, 0, 21, 0, 3, 0, 19, 0, 12, 0, 22, 0, 29, 0, 5, 0, 18, 0, 33, 0, 18, 0, 22, 0, 29, 0, 18, 0, 29, 0, 37, 0, 19, 0, 22, 0, 29, 0, 19, 0, 24, 0, 22, 0, 33, 0, 6, 0, 19, 0, 21, 0, 7, 0, 20, 0, 33, 0, 19, 0, 26, 0, 29, 0, 5, 0, 19, 0, 25, 0, 18, 0, 37, 0, 6, 0, 33, 0, 19, 0, 12, 0, 22, 0, 29, 0, 33, 0, 7, 0, 31, 0, 33, 0, 19, 0, 18, 0, 29, 0, 19, 0, 26, 0, 21, 0, 21, 0, 19, 0, 21, 0, 26, 0, 3, 0, 7, 0, 25, 0, 8, 0], | |
[0, 33, 0, 6, 0, 7, 0, 19, 0, 34, 0, 4, 0, 18, 0, 12, 0, 0, 0, 19, 0, 24, 0, 25, 0, 22, 0, 9, 0, 29, 0, 19, 0, 20, 0, 22, 0, 31, 0, 19, 0, 16, 0, 4, 0, 17, 0, 13, 0, 8, 0, 19, 0, 22, 0, 32, 0, 7, 0, 25, 0, 19, 0, 33, 0, 6, 0, 7, 0, 19, 0, 21, 0, 26, 0, 2, 0, 3, 0, 19, 0, 5, 0, 22, 0, 37, 0, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38], | |
[0, 9, 0, 7, 0, 19, 0, 4, 0, 8, 0, 7, 0, 19, 0, 0, 0, 19, 0, 26, 0, 8, 0, 19, 0, 22, 0, 4, 0, 25, 0, 19, 0, 13, 0, 26, 0, 5, 0, 5, 0, 18, 0, 29, 0, 37, 0, 19, 0, 33, 0, 22, 0, 0, 0, 7, 0, 29, 0, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38], | |
], | |
'attention_mask': [ | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
] | |
} | |
# fmt: on | |
tokenizer_classes = [self.tokenizer_class] | |
if self.test_rust_tokenizer: | |
tokenizer_classes.append(self.rust_tokenizer_class) | |
for tokenizer_class in tokenizer_classes: | |
tokenizer = tokenizer_class.from_pretrained( | |
"facebook/mms-tts-eng", | |
revision="089bbb15da46b2ab2b282145941399aae353d917", # to pin the tokenizer version | |
) | |
encoding = tokenizer(sequences, padding=True, normalize=True) | |
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] | |
encoding_data = encoding.data | |
self.assertDictEqual(encoding_data, expected_encoding) | |
for expected, decoded in zip(normalized_sequences, decoded_sequences): | |
self.assertEqual(expected, decoded) | |