# Model outputs All models have outputs that are instances of subclasses of [`~utils.ModelOutput`]. Those are data structures containing all the information returned by the model, but that can also be used as tuples or dictionaries. Let's see how this looks in an example: ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = BertForSequenceClassification.from_pretrained("bert-base-uncased") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(**inputs, labels=labels) ``` The `outputs` object is a [`~modeling_outputs.SequenceClassifierOutput`], as we can see in the documentation of that class below, it means it has an optional `loss`, a `logits`, an optional `hidden_states` and an optional `attentions` attribute. Here we have the `loss` since we passed along `labels`, but we don't have `hidden_states` and `attentions` because we didn't pass `output_hidden_states=True` or `output_attentions=True`. When passing `output_hidden_states=True` you may expect the `outputs.hidden_states[-1]` to match `outputs.last_hidden_states` exactly. However, this is not always the case. Some models apply normalization or subsequent process to the last hidden state when it's returned. You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you will get `None`. Here for instance `outputs.loss` is the loss computed by the model, and `outputs.attentions` is `None`. When considering our `outputs` object as tuple, it only considers the attributes that don't have `None` values. Here for instance, it has two elements, `loss` then `logits`, so ```python outputs[:2] ``` will return the tuple `(outputs.loss, outputs.logits)` for instance. When considering our `outputs` object as dictionary, it only considers the attributes that don't have `None` values. Here for instance, it has two keys that are `loss` and `logits`. We document here the generic model outputs that are used by more than one model type. Specific output types are documented on their corresponding model page. ## ModelOutput [[autodoc]] utils.ModelOutput - to_tuple ## BaseModelOutput [[autodoc]] modeling_outputs.BaseModelOutput ## BaseModelOutputWithPooling [[autodoc]] modeling_outputs.BaseModelOutputWithPooling ## BaseModelOutputWithCrossAttentions [[autodoc]] modeling_outputs.BaseModelOutputWithCrossAttentions ## BaseModelOutputWithPoolingAndCrossAttentions [[autodoc]] modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions ## BaseModelOutputWithPast [[autodoc]] modeling_outputs.BaseModelOutputWithPast ## BaseModelOutputWithPastAndCrossAttentions [[autodoc]] modeling_outputs.BaseModelOutputWithPastAndCrossAttentions ## Seq2SeqModelOutput [[autodoc]] modeling_outputs.Seq2SeqModelOutput ## CausalLMOutput [[autodoc]] modeling_outputs.CausalLMOutput ## CausalLMOutputWithCrossAttentions [[autodoc]] modeling_outputs.CausalLMOutputWithCrossAttentions ## CausalLMOutputWithPast [[autodoc]] modeling_outputs.CausalLMOutputWithPast ## MaskedLMOutput [[autodoc]] modeling_outputs.MaskedLMOutput ## Seq2SeqLMOutput [[autodoc]] modeling_outputs.Seq2SeqLMOutput ## NextSentencePredictorOutput [[autodoc]] modeling_outputs.NextSentencePredictorOutput ## SequenceClassifierOutput [[autodoc]] modeling_outputs.SequenceClassifierOutput ## Seq2SeqSequenceClassifierOutput [[autodoc]] modeling_outputs.Seq2SeqSequenceClassifierOutput ## MultipleChoiceModelOutput [[autodoc]] modeling_outputs.MultipleChoiceModelOutput ## TokenClassifierOutput [[autodoc]] modeling_outputs.TokenClassifierOutput ## QuestionAnsweringModelOutput [[autodoc]] modeling_outputs.QuestionAnsweringModelOutput ## Seq2SeqQuestionAnsweringModelOutput [[autodoc]] modeling_outputs.Seq2SeqQuestionAnsweringModelOutput ## Seq2SeqSpectrogramOutput [[autodoc]] modeling_outputs.Seq2SeqSpectrogramOutput ## SemanticSegmenterOutput [[autodoc]] modeling_outputs.SemanticSegmenterOutput ## ImageClassifierOutput [[autodoc]] modeling_outputs.ImageClassifierOutput ## ImageClassifierOutputWithNoAttention [[autodoc]] modeling_outputs.ImageClassifierOutputWithNoAttention ## DepthEstimatorOutput [[autodoc]] modeling_outputs.DepthEstimatorOutput ## Wav2Vec2BaseModelOutput [[autodoc]] modeling_outputs.Wav2Vec2BaseModelOutput ## XVectorOutput [[autodoc]] modeling_outputs.XVectorOutput ## Seq2SeqTSModelOutput [[autodoc]] modeling_outputs.Seq2SeqTSModelOutput ## Seq2SeqTSPredictionOutput [[autodoc]] modeling_outputs.Seq2SeqTSPredictionOutput ## SampleTSPredictionOutput [[autodoc]] modeling_outputs.SampleTSPredictionOutput ## TFBaseModelOutput [[autodoc]] modeling_tf_outputs.TFBaseModelOutput ## TFBaseModelOutputWithPooling [[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPooling ## TFBaseModelOutputWithPoolingAndCrossAttentions [[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions ## TFBaseModelOutputWithPast [[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPast ## TFBaseModelOutputWithPastAndCrossAttentions [[autodoc]] modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions ## TFSeq2SeqModelOutput [[autodoc]] modeling_tf_outputs.TFSeq2SeqModelOutput ## TFCausalLMOutput [[autodoc]] modeling_tf_outputs.TFCausalLMOutput ## TFCausalLMOutputWithCrossAttentions [[autodoc]] modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions ## TFCausalLMOutputWithPast [[autodoc]] modeling_tf_outputs.TFCausalLMOutputWithPast ## TFMaskedLMOutput [[autodoc]] modeling_tf_outputs.TFMaskedLMOutput ## TFSeq2SeqLMOutput [[autodoc]] modeling_tf_outputs.TFSeq2SeqLMOutput ## TFNextSentencePredictorOutput [[autodoc]] modeling_tf_outputs.TFNextSentencePredictorOutput ## TFSequenceClassifierOutput [[autodoc]] modeling_tf_outputs.TFSequenceClassifierOutput ## TFSeq2SeqSequenceClassifierOutput [[autodoc]] modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput ## TFMultipleChoiceModelOutput [[autodoc]] modeling_tf_outputs.TFMultipleChoiceModelOutput ## TFTokenClassifierOutput [[autodoc]] modeling_tf_outputs.TFTokenClassifierOutput ## TFQuestionAnsweringModelOutput [[autodoc]] modeling_tf_outputs.TFQuestionAnsweringModelOutput ## TFSeq2SeqQuestionAnsweringModelOutput [[autodoc]] modeling_tf_outputs.TFSeq2SeqQuestionAnsweringModelOutput ## FlaxBaseModelOutput [[autodoc]] modeling_flax_outputs.FlaxBaseModelOutput ## FlaxBaseModelOutputWithPast [[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPast ## FlaxBaseModelOutputWithPooling [[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPooling ## FlaxBaseModelOutputWithPastAndCrossAttentions [[autodoc]] modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions ## FlaxSeq2SeqModelOutput [[autodoc]] modeling_flax_outputs.FlaxSeq2SeqModelOutput ## FlaxCausalLMOutputWithCrossAttentions [[autodoc]] modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions ## FlaxMaskedLMOutput [[autodoc]] modeling_flax_outputs.FlaxMaskedLMOutput ## FlaxSeq2SeqLMOutput [[autodoc]] modeling_flax_outputs.FlaxSeq2SeqLMOutput ## FlaxNextSentencePredictorOutput [[autodoc]] modeling_flax_outputs.FlaxNextSentencePredictorOutput ## FlaxSequenceClassifierOutput [[autodoc]] modeling_flax_outputs.FlaxSequenceClassifierOutput ## FlaxSeq2SeqSequenceClassifierOutput [[autodoc]] modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput ## FlaxMultipleChoiceModelOutput [[autodoc]] modeling_flax_outputs.FlaxMultipleChoiceModelOutput ## FlaxTokenClassifierOutput [[autodoc]] modeling_flax_outputs.FlaxTokenClassifierOutput ## FlaxQuestionAnsweringModelOutput [[autodoc]] modeling_flax_outputs.FlaxQuestionAnsweringModelOutput ## FlaxSeq2SeqQuestionAnsweringModelOutput [[autodoc]] modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput