Update app.py
Browse files
app.py
CHANGED
@@ -19,8 +19,28 @@ RAVE_MODELS = {
|
|
19 |
|
20 |
MODEL_CACHE = {}
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def load_rave_model(model_name):
|
23 |
-
"""Load a RAVE model from Hugging Face
|
24 |
if model_name in MODEL_CACHE:
|
25 |
return MODEL_CACHE[model_name]
|
26 |
|
@@ -29,7 +49,7 @@ def load_rave_model(model_name):
|
|
29 |
filename=RAVE_MODELS[model_name]
|
30 |
)
|
31 |
|
32 |
-
model =
|
33 |
model.eval()
|
34 |
MODEL_CACHE[model_name] = model
|
35 |
return model
|
@@ -42,17 +62,19 @@ def apply_rave(audio, model_name):
|
|
42 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
43 |
sr = audio[1]
|
44 |
|
|
|
45 |
if sr != 48000:
|
46 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
47 |
sr = 48000
|
48 |
|
49 |
-
# Pass through model (encode -> decode)
|
50 |
with torch.no_grad():
|
|
|
|
|
51 |
z = model.encode(audio_tensor)
|
52 |
processed_audio = model.decode(z)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
# π Gradio Interface
|
58 |
with gr.Blocks() as demo:
|
|
|
19 |
|
20 |
MODEL_CACHE = {}
|
21 |
|
22 |
+
import gradio as gr
|
23 |
+
import torchaudio
|
24 |
+
import torch
|
25 |
+
import numpy as np
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
|
28 |
+
# β
Available RAVE models
|
29 |
+
RAVE_MODELS = {
|
30 |
+
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
31 |
+
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
32 |
+
"Organ (Archive)": "organ_archive_b2048_r48000_z16.ts",
|
33 |
+
"Organ (Bach)": "organ_bach_b2048_r48000_z16.ts",
|
34 |
+
"Voice Multivoice": "voice-multi-b2048-r48000-z11.ts",
|
35 |
+
"Birds Dawn Chorus": "birds_dawnchorus_b2048_r48000_z8.ts",
|
36 |
+
"Magnets": "magnets_b2048_r48000_z8.ts",
|
37 |
+
"Whale Songs": "humpbacks_pondbrain_b2048_r48000_z20.ts"
|
38 |
+
}
|
39 |
+
|
40 |
+
MODEL_CACHE = {}
|
41 |
+
|
42 |
def load_rave_model(model_name):
|
43 |
+
"""Load a TorchScript RAVE model directly from Hugging Face."""
|
44 |
if model_name in MODEL_CACHE:
|
45 |
return MODEL_CACHE[model_name]
|
46 |
|
|
|
49 |
filename=RAVE_MODELS[model_name]
|
50 |
)
|
51 |
|
52 |
+
model = torch.jit.load(model_file, map_location="cpu")
|
53 |
model.eval()
|
54 |
MODEL_CACHE[model_name] = model
|
55 |
return model
|
|
|
62 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
63 |
sr = audio[1]
|
64 |
|
65 |
+
# β
resample if needed
|
66 |
if sr != 48000:
|
67 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
68 |
sr = 48000
|
69 |
|
|
|
70 |
with torch.no_grad():
|
71 |
+
# β
pass audio through RAVE TorchScript (encode/decode)
|
72 |
+
# TorchScript models are usually structured like: model.encode(x) / model.decode(z)
|
73 |
z = model.encode(audio_tensor)
|
74 |
processed_audio = model.decode(z)
|
75 |
|
76 |
+
return (processed_audio.squeeze().cpu().numpy(), sr)
|
77 |
+
|
78 |
|
79 |
# π Gradio Interface
|
80 |
with gr.Blocks() as demo:
|