Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from rave import RAVE # Assuming rave.py or pip package is available
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
|
8 |
+
# β
Available RAVE models (can expand dynamically from HF repo)
|
9 |
+
RAVE_MODELS = {
|
10 |
+
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
11 |
+
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
12 |
+
"Organ (Archive)": "organ_archive_b2048_r48000_z16.ts",
|
13 |
+
"Organ (Bach)": "organ_bach_b2048_r48000_z16.ts",
|
14 |
+
"Voice Multivoice": "voice-multi-b2048-r48000-z11.ts",
|
15 |
+
"Birds Dawn Chorus": "birds_dawnchorus_b2048_r48000_z8.ts",
|
16 |
+
"Magnets": "magnets_b2048_r48000_z8.ts",
|
17 |
+
"Whale Songs": "humpbacks_pondbrain_b2048_r48000_z20.ts"
|
18 |
+
}
|
19 |
+
|
20 |
+
MODEL_CACHE = {}
|
21 |
+
|
22 |
+
def load_rave_model(model_name):
|
23 |
+
"""Load a RAVE model from Hugging Face or cache."""
|
24 |
+
if model_name in MODEL_CACHE:
|
25 |
+
return MODEL_CACHE[model_name]
|
26 |
+
|
27 |
+
model_file = hf_hub_download(
|
28 |
+
repo_id="Intelligent-Instruments-Lab/rave-models",
|
29 |
+
filename=RAVE_MODELS[model_name]
|
30 |
+
)
|
31 |
+
|
32 |
+
model = RAVE.load(model_file) # RAVE.load assumes wrapper for loading .ts file
|
33 |
+
model.eval()
|
34 |
+
MODEL_CACHE[model_name] = model
|
35 |
+
return model
|
36 |
+
|
37 |
+
def apply_rave(audio, model_name):
|
38 |
+
"""Apply selected RAVE style transfer model to uploaded audio."""
|
39 |
+
model = load_rave_model(model_name)
|
40 |
+
|
41 |
+
# Convert numpy audio (from Gradio) to torch tensor
|
42 |
+
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
43 |
+
sr = audio[1]
|
44 |
+
|
45 |
+
if sr != 48000:
|
46 |
+
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
47 |
+
sr = 48000
|
48 |
+
|
49 |
+
# Pass through model (encode -> decode)
|
50 |
+
with torch.no_grad():
|
51 |
+
z = model.encode(audio_tensor)
|
52 |
+
processed_audio = model.decode(z)
|
53 |
+
|
54 |
+
processed_audio = processed_audio.squeeze().cpu().numpy()
|
55 |
+
return (processed_audio, sr)
|
56 |
+
|
57 |
+
# π Gradio Interface
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("## π RAVE Style Transfer on Stems")
|
60 |
+
gr.Markdown("Upload audio, select a RAVE model, and get a transformed version.")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
audio_input = gr.Audio(type="numpy", label="Upload Audio", sources=["upload", "microphone"])
|
64 |
+
model_selector = gr.Dropdown(list(RAVE_MODELS.keys()), label="Select Style", value="Guitar")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
output_audio = gr.Audio(type="numpy", label="Transformed Audio")
|
68 |
+
|
69 |
+
# API + UI trigger
|
70 |
+
process_btn = gr.Button("Apply Style Transfer")
|
71 |
+
process_btn.click(fn=apply_rave, inputs=[audio_input, model_selector], outputs=output_audio)
|
72 |
+
|
73 |
+
demo.launch()
|