ahmedess0's picture
Update app.py
2ec100f verified
raw
history blame
5.05 kB
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import Counter
import re
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def search_arxiv(query: str):
"""Searches arXiv for academic papers and returns structured results.
Args:
query (str): The topic or keywords to search for.
Returns:
list: A list of tuples containing titles, summaries, and links.
"""
max_results = 5
url = f"http://export.arxiv.org/api/query?search_query={query}&max_results={max_results}"
response = requests.get(url)
if response.status_code == 200:
papers = []
root = ET.fromstring(response.text)
for entry in root.findall("{http://www.w3.org/2005/Atom}entry"):
title = entry.find("{http://www.w3.org/2005/Atom}title").text
summary = entry.find("{http://www.w3.org/2005/Atom}summary").text
link = entry.find("{http://www.w3.org/2005/Atom}id").text
papers.append((title, summary, link))
return papers
return []
def generate_visuals(query):
results = search_arxiv(query)
if not results:
return "No papers found.", None, None
# Extract text data
titles = [title for title, _, _ in results]
summaries = " ".join(summary for _, summary, _ in results)
# Generate Bar Chart for Keyword Frequency in Titles
words = [word.lower() for title in titles for word in re.findall(r'\b\w+\b', title) if len(word) > 3]
word_counts = Counter(words).most_common(10)
plt.figure(figsize=(8, 5))
plt.bar(*zip(*word_counts), color='skyblue')
plt.xticks(rotation=45)
plt.title("Top Keywords in Titles")
plt.xlabel("Keywords")
plt.ylabel("Frequency")
plt.tight_layout()
bar_chart_path = "bar_chart.png"
plt.savefig(bar_chart_path)
plt.close()
# Generate Word Cloud for Summary Text
wordcloud = WordCloud(width=500, height=300, background_color="white").generate(summaries)
plt.figure(figsize=(8, 5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
wordcloud_path = "wordcloud.png"
plt.savefig(wordcloud_path)
plt.close()
# Display Search Results as Clickable Links
markdown_text = "\n\n".join(
[f"**[{title}]({link})**\n\n{summary}" for title, summary, link in results]
)
return markdown_text, bar_chart_path, wordcloud_path
@tool
def summarize_text(text: str) -> str:
"""Summarizes long academic papers or articles.
Args:
text: The text to summarize.
"""
model = HfApiModel(
max_tokens=512,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
)
return model.generate(f"Summarize this research paper: {text}")
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, search_arxiv, summarize_text], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="Research Assistant",
description=None,
prompt_templates=prompt_templates
)
iface = gr.Interface(
fn=generate_visuals,
inputs="text",
outputs=["markdown", "image", "image"],
title="🔎 arXiv Research Paper Search",
description="Enter a topic or keywords to search for academic papers on arXiv. Get a list of papers with visual analysis.",
examples=[["Machine Learning"], ["Quantum Computing"], ["Climate Change"]]
)
iface.launch()
GradioUI(agent).launch()