Spaces:
Running
Running
Update email_gen.py
Browse files- email_gen.py +585 -561
email_gen.py
CHANGED
@@ -1,561 +1,585 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from llama_cpp import Llama
|
4 |
-
import re
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
import random
|
7 |
-
|
8 |
-
class EmailGenerator:
|
9 |
-
def __init__(self, custom_model_path=None):
|
10 |
-
self.model = None
|
11 |
-
self.model_path = custom_model_path or self._download_model()
|
12 |
-
self._load_model()
|
13 |
-
self.prompt_templates = self._load_prompt_templates()
|
14 |
-
|
15 |
-
def _download_model(self):
|
16 |
-
"""Download Vicuna-7B GGUF model from Hugging Face"""
|
17 |
-
try:
|
18 |
-
model_name = "TheBloke/vicuna-7B-v1.5-GGUF"
|
19 |
-
filename = "vicuna-7b-v1.5.Q4_K_M.gguf"
|
20 |
-
|
21 |
-
print("Downloading Vicuna-7B model... This may take a while.")
|
22 |
-
model_path = hf_hub_download(
|
23 |
-
repo_id=model_name,
|
24 |
-
filename=filename,
|
25 |
-
cache_dir="./models"
|
26 |
-
)
|
27 |
-
print(f"Model downloaded to: {model_path}")
|
28 |
-
return model_path
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Error downloading model: {e}")
|
31 |
-
return None
|
32 |
-
|
33 |
-
def _load_model(self):
|
34 |
-
"""Load the GGUF model using llama-cpp-python"""
|
35 |
-
try:
|
36 |
-
if self.model_path and os.path.exists(self.model_path):
|
37 |
-
print(f"π€ Loading language model from: {self.model_path}")
|
38 |
-
self.model = Llama(
|
39 |
-
model_path=self.model_path,
|
40 |
-
n_ctx=2048, # Context length
|
41 |
-
n_threads=2, # Reduced for stability
|
42 |
-
n_batch=512, # Batch size
|
43 |
-
verbose=False,
|
44 |
-
use_mmap=True, # Memory mapping for efficiency
|
45 |
-
use_mlock=False # Don't lock memory
|
46 |
-
)
|
47 |
-
print("β
Model loaded successfully!")
|
48 |
-
|
49 |
-
# Test the model with a simple prompt
|
50 |
-
test_response = self.model("Test", max_tokens=5, temperature=0.1)
|
51 |
-
if test_response and 'choices' in test_response:
|
52 |
-
print("β
Model test successful")
|
53 |
-
else:
|
54 |
-
print("β οΈ Model test failed, will use fallback")
|
55 |
-
self.model = None
|
56 |
-
|
57 |
-
else:
|
58 |
-
print("β No valid model path found. Using advanced fallback generation.")
|
59 |
-
self.model = None
|
60 |
-
except Exception as e:
|
61 |
-
print(f"β Error loading model: {e}")
|
62 |
-
print("π Will use advanced fallback generation system")
|
63 |
-
self.model = None
|
64 |
-
|
65 |
-
def _generate_with_model(self, prompt, max_tokens=250, temperature=0.7):
|
66 |
-
"""Generate text using the loaded model with retry logic"""
|
67 |
-
try:
|
68 |
-
if self.model:
|
69 |
-
# First attempt
|
70 |
-
response = self.model(
|
71 |
-
prompt,
|
72 |
-
max_tokens=max_tokens,
|
73 |
-
temperature=temperature,
|
74 |
-
top_p=0.9,
|
75 |
-
stop=["</s>", "\n\n\n", "EXAMPLE", "Now write"],
|
76 |
-
echo=False
|
77 |
-
)
|
78 |
-
result = response['choices'][0]['text'].strip()
|
79 |
-
|
80 |
-
# Check if result is valid
|
81 |
-
if self._is_valid_output(result):
|
82 |
-
return result
|
83 |
-
|
84 |
-
# Retry with different temperature if first attempt failed
|
85 |
-
print("First attempt failed, retrying with adjusted parameters...")
|
86 |
-
response = self.model(
|
87 |
-
prompt,
|
88 |
-
max_tokens=max_tokens,
|
89 |
-
temperature=min(temperature + 0.2, 1.0),
|
90 |
-
top_p=0.8,
|
91 |
-
stop=["</s>", "\n\n\n", "EXAMPLE", "Now write"],
|
92 |
-
echo=False
|
93 |
-
)
|
94 |
-
return response['choices'][0]['text'].strip()
|
95 |
-
else:
|
96 |
-
return self._fallback_generation(prompt)
|
97 |
-
except Exception as e:
|
98 |
-
print(f"Error generating with model: {e}")
|
99 |
-
return self._fallback_generation(prompt)
|
100 |
-
|
101 |
-
def _is_valid_output(self, output):
|
102 |
-
"""Check if the generated output is valid"""
|
103 |
-
if not output or len(output) < 20:
|
104 |
-
return False
|
105 |
-
|
106 |
-
# Check for incomplete JSON
|
107 |
-
if '{' in output and '}' not in output:
|
108 |
-
return False
|
109 |
-
|
110 |
-
# Check for common failure patterns
|
111 |
-
failure_patterns = [
|
112 |
-
'I cannot', 'I apologize', 'I\'m sorry',
|
113 |
-
'[Your Name]', '[Company]', '[Product]',
|
114 |
-
'EXAMPLE', 'Now write'
|
115 |
-
]
|
116 |
-
|
117 |
-
return not any(pattern in output for pattern in failure_patterns)
|
118 |
-
|
119 |
-
def _parse_json_response(self, response):
|
120 |
-
"""Parse JSON response from the model"""
|
121 |
-
try:
|
122 |
-
# Clean up the response
|
123 |
-
response = response.strip()
|
124 |
-
|
125 |
-
# Extract JSON if it's embedded in text
|
126 |
-
json_match = re.search(r'\{[^}]*"subject"[^}]*\}', response, re.DOTALL)
|
127 |
-
if json_match:
|
128 |
-
response = json_match.group(0)
|
129 |
-
|
130 |
-
# Parse JSON
|
131 |
-
data = json.loads(response)
|
132 |
-
|
133 |
-
subject = data.get('subject', '').strip()
|
134 |
-
body = data.get('body', '').strip()
|
135 |
-
|
136 |
-
# Clean up quotes and formatting
|
137 |
-
subject = subject.strip('"\'')
|
138 |
-
body = body.strip('"\'')
|
139 |
-
|
140 |
-
return subject, body
|
141 |
-
|
142 |
-
except (json.JSONDecodeError, KeyError) as e:
|
143 |
-
print(f"JSON parsing error: {e}")
|
144 |
-
return self._extract_fallback_content(response)
|
145 |
-
|
146 |
-
def _extract_fallback_content(self, response):
|
147 |
-
"""Extract subject and body from non-JSON response"""
|
148 |
-
lines = response.split('\n')
|
149 |
-
subject = ""
|
150 |
-
body = ""
|
151 |
-
|
152 |
-
# Look for subject line
|
153 |
-
for line in lines:
|
154 |
-
if any(word in line.lower() for word in ['subject:', 'subj:', 'sub:']):
|
155 |
-
subject = re.sub(r'^[^:]*:', '', line).strip()
|
156 |
-
break
|
157 |
-
|
158 |
-
# Look for body
|
159 |
-
body_started = False
|
160 |
-
body_lines = []
|
161 |
-
for line in lines:
|
162 |
-
if body_started:
|
163 |
-
if line.strip():
|
164 |
-
body_lines.append(line.strip())
|
165 |
-
elif any(word in line.lower() for word in ['body:', 'email:', 'hi ', 'dear ', 'hello ']):
|
166 |
-
body_started = True
|
167 |
-
clean_line = re.sub(r'^[^:]*:', '', line).strip()
|
168 |
-
if clean_line and not clean_line.lower().startswith(('body', 'email')):
|
169 |
-
body_lines.append(clean_line)
|
170 |
-
|
171 |
-
body = '\n'.join(body_lines) if body_lines else response
|
172 |
-
|
173 |
-
# Fallback if parsing failed
|
174 |
-
if not subject:
|
175 |
-
subject = f"Partnership opportunity"
|
176 |
-
if not body or len(body) < 20:
|
177 |
-
body = "Hi,\n\nI'd love to explore how we can help your business grow.\n\nInterested in a quick call?\n\nBest regards"
|
178 |
-
|
179 |
-
return subject, body
|
180 |
-
|
181 |
-
def _advanced_fallback_generation(self, name, company, company_info, tone="Professional"):
|
182 |
-
"""Advanced fallback with company-specific personalization"""
|
183 |
-
|
184 |
-
# Extract industry and key details from company info
|
185 |
-
industry_hints = self._extract_industry_details(company_info)
|
186 |
-
|
187 |
-
# Create tone-specific templates
|
188 |
-
if tone.lower() == "friendly":
|
189 |
-
templates = [
|
190 |
-
{
|
191 |
-
"subject": f"Love what {company} is doing{industry_hints['subject_suffix']}",
|
192 |
-
"body": f"Hi {name},\n\nJust came across {company}{industry_hints['context']} - really impressive work!\n\nWe've helped similar {industry_hints['industry']} companies {industry_hints['benefit']}. Mind if I share a quick example?\n\n15-minute call work for you?\n\nCheers,\nAlex"
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"subject": f"Quick idea for {company}",
|
196 |
-
"body": f"Hi {name},\n\n{company}'s {industry_hints['focus']} caught my eye. We just helped a similar company {industry_hints['specific_result']}.\n\nWorth exploring for {company}?\n\nBest,\nSam"
|
197 |
-
}
|
198 |
-
]
|
199 |
-
elif tone.lower() == "direct":
|
200 |
-
templates = [
|
201 |
-
{
|
202 |
-
"subject": f"{company} + {industry_hints['solution']}?",
|
203 |
-
"body": f"Hi {name},\n\n{industry_hints['direct_opener']} for {company}.\n\nResult: {industry_hints['specific_result']}.\n\nInterested? 10-minute call?\n\n-Alex"
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"subject": f"ROI opportunity for {company}",
|
207 |
-
"body": f"{name},\n\nQuick question: Is {company} looking to {industry_hints['goal']}?\n\nWe reduced costs by 35% for a similar {industry_hints['industry']} company.\n\nWorth a conversation?\n\nBest,\nSam"
|
208 |
-
}
|
209 |
-
]
|
210 |
-
else: # Professional
|
211 |
-
templates = [
|
212 |
-
{
|
213 |
-
"subject": f"Operational efficiency opportunity - {company}",
|
214 |
-
"body": f"Hi {name},\n\nI noticed {company} specializes in {industry_hints['specialty']}. We recently helped a similar organization {industry_hints['professional_result']}.\n\nWould you be open to a brief conversation about how this might apply to {company}?\n\nBest regards,\nAlex Thompson"
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"subject": f"Thought on {company}'s {industry_hints['focus']}",
|
218 |
-
"body": f"Hi {name},\n\n{company}'s work in {industry_hints['area']} is impressive. We've developed solutions that help {industry_hints['industry']} companies {industry_hints['benefit']}.\n\nWould you be interested in a 15-minute discussion about potential applications for {company}?\n\nBest regards,\nSarah Chen"
|
219 |
-
}
|
220 |
-
]
|
221 |
-
|
222 |
-
template = random.choice(templates)
|
223 |
-
return template["subject"], template["body"]
|
224 |
-
|
225 |
-
def _extract_industry_details(self, company_info):
|
226 |
-
"""Extract industry-specific details for personalization"""
|
227 |
-
info_lower = company_info.lower() if company_info else ""
|
228 |
-
|
229 |
-
if any(word in info_lower for word in ['tech', 'software', 'saas', 'ai', 'digital']):
|
230 |
-
return {
|
231 |
-
'industry': 'tech',
|
232 |
-
'specialty': 'technology solutions',
|
233 |
-
'focus': 'innovation',
|
234 |
-
'area': 'technology',
|
235 |
-
'benefit': 'scale their platforms and reduce technical debt',
|
236 |
-
'goal': 'optimize your development pipeline',
|
237 |
-
'solution': 'DevOps automation',
|
238 |
-
'context': ' and their tech stack',
|
239 |
-
'subject_suffix': ' with tech',
|
240 |
-
'direct_opener': 'We implemented automated testing',
|
241 |
-
'specific_result': 'reduced deployment time by 60%',
|
242 |
-
'professional_result': 'achieve 40% faster time-to-market for new features'
|
243 |
-
}
|
244 |
-
elif any(word in info_lower for word in ['manufactur', 'industrial', 'equipment', 'materials']):
|
245 |
-
return {
|
246 |
-
'industry': 'manufacturing',
|
247 |
-
'specialty': 'industrial operations',
|
248 |
-
'focus': 'production efficiency',
|
249 |
-
'area': 'manufacturing',
|
250 |
-
'benefit': 'optimize their production lines and reduce waste',
|
251 |
-
'goal': 'increase production efficiency',
|
252 |
-
'solution': 'process optimization',
|
253 |
-
'context': ' and their manufacturing capabilities',
|
254 |
-
'subject_suffix': ' in manufacturing',
|
255 |
-
'direct_opener': 'We streamlined production workflows',
|
256 |
-
'specific_result': 'increased throughput by 45%',
|
257 |
-
'professional_result': 'achieve 30% improvement in production efficiency'
|
258 |
-
}
|
259 |
-
elif any(word in info_lower for word in ['health', 'medical', 'pharma', 'clinical']):
|
260 |
-
return {
|
261 |
-
'industry': 'healthcare',
|
262 |
-
'specialty': 'healthcare solutions',
|
263 |
-
'focus': 'patient outcomes',
|
264 |
-
'area': 'healthcare',
|
265 |
-
'benefit': 'improve patient outcomes while reducing costs',
|
266 |
-
'goal': 'enhance patient care efficiency',
|
267 |
-
'solution': 'workflow optimization',
|
268 |
-
'context': ' and their patient care approach',
|
269 |
-
'subject_suffix': ' in healthcare',
|
270 |
-
'direct_opener': 'We optimized patient flow systems',
|
271 |
-
'specific_result': 'reduced wait times by 50%',
|
272 |
-
'professional_result': 'achieve 25% improvement in patient satisfaction scores'
|
273 |
-
}
|
274 |
-
else:
|
275 |
-
return {
|
276 |
-
'industry': 'business',
|
277 |
-
'specialty': 'business operations',
|
278 |
-
'focus': 'growth',
|
279 |
-
'area': 'operations',
|
280 |
-
'benefit': 'streamline operations and drive growth',
|
281 |
-
'goal': 'scale your operations',
|
282 |
-
'solution': 'process optimization',
|
283 |
-
'context': ' and their business model',
|
284 |
-
'subject_suffix': '',
|
285 |
-
'direct_opener': 'We automated key business processes',
|
286 |
-
'specific_result': 'increased efficiency by 40%',
|
287 |
-
'professional_result': 'achieve 35% operational cost reduction'
|
288 |
-
}
|
289 |
-
|
290 |
-
def _load_prompt_templates(self):
|
291 |
-
"""Load sophisticated prompt templates for different use cases"""
|
292 |
-
return {
|
293 |
-
"few_shot_template": '''You are an elite B2B sales copywriter. Write ONE personalized cold email that sounds natural and converts.
|
294 |
-
|
295 |
-
<examples>
|
296 |
-
EXAMPLE 1:
|
297 |
-
SUBJECT: Quick question about Acme's EU expansion
|
298 |
-
BODY: Hi Sarah,
|
299 |
-
|
300 |
-
Saw Acme just launched in Berlin β congrats! We helped Contoso reduce their GDPR compliance prep by 68% with a simple automation.
|
301 |
-
|
302 |
-
Worth a 10-minute chat about how this could apply to your EU rollout?
|
303 |
-
|
304 |
-
Best,
|
305 |
-
Alex
|
306 |
-
|
307 |
-
EXAMPLE 2:
|
308 |
-
SUBJECT: Thought on TechCorp's materials testing
|
309 |
-
BODY: Hi John,
|
310 |
-
|
311 |
-
Noticed TechCorp specializes in X-ray spectroscopy equipment. We just helped a similar lab increase throughput 40% with workflow optimization.
|
312 |
-
|
313 |
-
Mind if I share what worked for them? 15-minute call?
|
314 |
-
|
315 |
-
Best,
|
316 |
-
Sam
|
317 |
-
|
318 |
-
EXAMPLE 3:
|
319 |
-
SUBJECT: Manufacturing efficiency idea for IndustrialCorp
|
320 |
-
BODY: Hi Mike,
|
321 |
-
|
322 |
-
IndustrialCorp's production line setup caught my attention. We automated similar processes for MetalWorks, reducing their cycle time by 35%.
|
323 |
-
|
324 |
-
Open to a brief conversation about applications for your facility?
|
325 |
-
|
326 |
-
Best regards,
|
327 |
-
Jennifer
|
328 |
-
</examples>
|
329 |
-
|
330 |
-
Now write an email for:
|
331 |
-
Name: {name}
|
332 |
-
Company: {company}
|
333 |
-
Company Info: {company_context}
|
334 |
-
Tone: {tone}
|
335 |
-
|
336 |
-
Requirements:
|
337 |
-
- Use the company info naturally in the first 2 lines
|
338 |
-
- Maximum 70 words in body (excluding signature)
|
339 |
-
- Clear yes/no question at the end
|
340 |
-
- No placeholders like [Your Name] or [Company]
|
341 |
-
- Professional but conversational
|
342 |
-
- Include specific benefit or result if possible
|
343 |
-
|
344 |
-
Return ONLY this JSON format:
|
345 |
-
{{"subject": "...", "body": "..."}}''',
|
346 |
-
|
347 |
-
"industry_specific": {
|
348 |
-
"technology": '''Write a cold email for a tech company. Focus on efficiency, scalability, and competitive advantage.''',
|
349 |
-
"healthcare": '''Write a cold email for a healthcare company. Focus on patient outcomes, compliance, and cost reduction.''',
|
350 |
-
"manufacturing": '''Write a cold email for a manufacturing company. Focus on production efficiency, quality, and cost savings.''',
|
351 |
-
"services": '''Write a cold email for a service company. Focus on client satisfaction, process improvement, and growth.''',
|
352 |
-
"default": '''Write a cold email that focuses on business growth and operational efficiency.'''
|
353 |
-
}
|
354 |
-
}
|
355 |
-
|
356 |
-
def _extract_industry(self, company_info):
|
357 |
-
"""Extract industry type from company information"""
|
358 |
-
company_lower = company_info.lower()
|
359 |
-
|
360 |
-
if any(word in company_lower for word in ['tech', 'software', 'saas', 'ai', 'digital', 'app', 'platform']):
|
361 |
-
return 'technology'
|
362 |
-
elif any(word in company_lower for word in ['health', 'medical', 'pharma', 'hospital', 'clinic']):
|
363 |
-
return 'healthcare'
|
364 |
-
elif any(word in company_lower for word in ['manufactur', 'factory', 'production', 'industrial', 'equipment']):
|
365 |
-
return 'manufacturing'
|
366 |
-
elif any(word in company_lower for word in ['service', 'consulting', 'agency', 'firm']):
|
367 |
-
return 'services'
|
368 |
-
else:
|
369 |
-
return 'default'
|
370 |
-
|
371 |
-
def _create_company_context(self, company, company_info):
|
372 |
-
"""Create focused company context for the prompt"""
|
373 |
-
# Extract key information and clean it up
|
374 |
-
context_parts = []
|
375 |
-
|
376 |
-
if company_info and len(company_info) > 10:
|
377 |
-
# Extract meaningful phrases
|
378 |
-
sentences = re.split(r'[.!?]+', company_info)
|
379 |
-
for sentence in sentences[:3]: # First 3 sentences
|
380 |
-
sentence = sentence.strip()
|
381 |
-
if len(sentence) > 20 and not sentence.startswith('Title:'):
|
382 |
-
# Remove common fluff words
|
383 |
-
sentence = re.sub(r'Description:\s*', '', sentence)
|
384 |
-
sentence = re.sub(r'Company Website:\s*', '', sentence)
|
385 |
-
sentence = re.sub(r'LinkedIn:\s*', '', sentence)
|
386 |
-
if sentence:
|
387 |
-
context_parts.append(sentence)
|
388 |
-
|
389 |
-
if not context_parts:
|
390 |
-
context_parts.append(f"{company} is a company in their industry")
|
391 |
-
|
392 |
-
return ' | '.join(context_parts[:2]) # Max 2 key points
|
393 |
-
|
394 |
-
def generate_email(self, name, company, company_info, tone="Professional", temperature=0.7):
|
395 |
-
"""Generate both subject and email body using advanced prompting"""
|
396 |
-
# Clean up and prepare context
|
397 |
-
company_context = self._create_company_context(company, company_info)
|
398 |
-
|
399 |
-
# Calibrate temperature for production readiness
|
400 |
-
if temperature > 1.0:
|
401 |
-
temperature = 0.8 # Cap at 0.8 for production readiness
|
402 |
-
|
403 |
-
# Try AI generation first
|
404 |
-
if self.model:
|
405 |
-
try:
|
406 |
-
# Build the prompt using few-shot template
|
407 |
-
prompt = self.prompt_templates["few_shot_template"].format(
|
408 |
-
name=name,
|
409 |
-
company=company,
|
410 |
-
company_context=company_context,
|
411 |
-
tone=tone.lower()
|
412 |
-
)
|
413 |
-
|
414 |
-
# Generate with model
|
415 |
-
response = self._generate_with_model(prompt, max_tokens=200, temperature=temperature)
|
416 |
-
|
417 |
-
# Parse the response
|
418 |
-
subject, body = self._parse_json_response(response)
|
419 |
-
|
420 |
-
# Polish the content
|
421 |
-
subject, body = self._polish_email_content(subject, body)
|
422 |
-
|
423 |
-
# Validate quality
|
424 |
-
quality_score, issues = self._validate_email_quality(subject, body, name, company)
|
425 |
-
|
426 |
-
# If quality is good enough, return it
|
427 |
-
if quality_score >= 70 and 'placeholders' not in issues:
|
428 |
-
print(f"β
AI generated email (Quality: {quality_score}%)")
|
429 |
-
return subject, body
|
430 |
-
else:
|
431 |
-
print(f"β οΈ AI output quality too low ({quality_score}%), using advanced fallback")
|
432 |
-
|
433 |
-
except Exception as e:
|
434 |
-
print(f"β AI generation failed: {e}, using advanced fallback")
|
435 |
-
|
436 |
-
# Use advanced fallback system
|
437 |
-
print("π Using advanced fallback generation")
|
438 |
-
subject, body = self._advanced_fallback_generation(name, company, company_info, tone)
|
439 |
-
|
440 |
-
# Always polish fallback content
|
441 |
-
subject, body = self._polish_email_content(subject, body)
|
442 |
-
|
443 |
-
return subject, body
|
444 |
-
|
445 |
-
def _clean_subject(self, subject, company):
|
446 |
-
"""Clean and validate subject line"""
|
447 |
-
if not subject or len(subject) < 5:
|
448 |
-
return f"Quick question about {company}"
|
449 |
-
|
450 |
-
# Remove common prefixes
|
451 |
-
subject = re.sub(r'^(Subject|SUBJECT):\s*', '', subject, flags=re.IGNORECASE)
|
452 |
-
subject = subject.strip('"\'')
|
453 |
-
|
454 |
-
# Ensure reasonable length
|
455 |
-
if len(subject) > 60:
|
456 |
-
subject = subject[:57] + "..."
|
457 |
-
|
458 |
-
return subject
|
459 |
-
|
460 |
-
def _clean_body(self, body, name):
|
461 |
-
"""Clean and validate email body"""
|
462 |
-
if not body or len(body) < 20:
|
463 |
-
return f"Hi {name},\n\nI'd love to discuss how we can help your business grow.\n\nInterested in a quick call?\n\nBest regards"
|
464 |
-
|
465 |
-
# Remove common prefixes
|
466 |
-
body = re.sub(r'^(Body|BODY|Email|EMAIL):\s*', '', body, flags=re.IGNORECASE)
|
467 |
-
|
468 |
-
# Ensure proper greeting
|
469 |
-
if not body.lower().startswith(('hi ', 'hello ', 'dear ')):
|
470 |
-
body = f"Hi {name},\n\n{body}"
|
471 |
-
|
472 |
-
# Ensure proper closing
|
473 |
-
closing_patterns = ['best regards', 'best,', 'sincerely', 'regards,', 'cheers,']
|
474 |
-
has_closing = any(pattern in body.lower() for pattern in closing_patterns)
|
475 |
-
|
476 |
-
if not has_closing:
|
477 |
-
if not body.endswith('\n'):
|
478 |
-
body += '\n'
|
479 |
-
body += '\nBest regards'
|
480 |
-
|
481 |
-
return body
|
482 |
-
|
483 |
-
def _polish_email_content(self, subject, body):
|
484 |
-
"""Polish email content for grammar and professionalism"""
|
485 |
-
|
486 |
-
# Fix common grammar issues
|
487 |
-
body = re.sub(r'\s+', ' ', body) # Multiple spaces
|
488 |
-
body = re.sub(r'([.!?])\s*([a-z])', r'\1 \2', body) # Space after punctuation
|
489 |
-
body = re.sub(r'(\w)\s*\n\s*(\w)', r'\1\n\n\2', body) # Proper paragraph spacing
|
490 |
-
|
491 |
-
# Ensure professional closing
|
492 |
-
if not re.search(r'(Best regards|Best|Sincerely|Cheers),?\s*\n?[A-Z][a-z]+', body):
|
493 |
-
if body.strip().endswith(','):
|
494 |
-
body = body.strip() + '\n\nBest regards,\nAlex'
|
495 |
-
else:
|
496 |
-
body = body.strip() + '\n\nBest regards,\nAlex'
|
497 |
-
|
498 |
-
# Fix subject line
|
499 |
-
subject = subject.strip()
|
500 |
-
if len(subject) > 65:
|
501 |
-
subject = subject[:62] + "..."
|
502 |
-
|
503 |
-
# Capitalize first letter of subject if not already
|
504 |
-
if subject and subject[0].islower():
|
505 |
-
subject = subject[0].upper() + subject[1:]
|
506 |
-
|
507 |
-
return subject, body
|
508 |
-
|
509 |
-
def _validate_email_quality(self, subject, body, name, company):
|
510 |
-
"""Validate email quality and return quality score"""
|
511 |
-
issues = []
|
512 |
-
|
513 |
-
# Check subject length
|
514 |
-
if len(subject) < 10 or len(subject) > 65:
|
515 |
-
issues.append("subject_length")
|
516 |
-
|
517 |
-
# Check body length
|
518 |
-
words = len(body.split())
|
519 |
-
if words < 20 or words > 150:
|
520 |
-
issues.append("body_length")
|
521 |
-
|
522 |
-
# Check for placeholders
|
523 |
-
if '[Your Name]' in body or '[Company]' in body or '{{' in body:
|
524 |
-
issues.append("placeholders")
|
525 |
-
|
526 |
-
# Check personalization
|
527 |
-
if name not in body or company not in body:
|
528 |
-
issues.append("personalization")
|
529 |
-
|
530 |
-
# Check for call-to-action
|
531 |
-
cta_phrases = ['call', 'conversation', 'chat', 'discuss', 'talk', 'meeting', 'connect']
|
532 |
-
if not any(phrase in body.lower() for phrase in cta_phrases):
|
533 |
-
issues.append("no_cta")
|
534 |
-
|
535 |
-
quality_score = max(0, 100 - (len(issues) * 15))
|
536 |
-
return quality_score, issues
|
537 |
-
|
538 |
-
def generate_multiple_variations(self, name, company, company_info, num_variations=3, tone="Professional"):
|
539 |
-
"""Generate multiple email variations with different approaches"""
|
540 |
-
variations = []
|
541 |
-
tones = ["Professional", "Friendly", "Direct"]
|
542 |
-
temperatures = [0.6, 0.7, 0.8]
|
543 |
-
|
544 |
-
for i in range(num_variations):
|
545 |
-
current_tone = tones[i % len(tones)]
|
546 |
-
current_temp = temperatures[i % len(temperatures)]
|
547 |
-
|
548 |
-
subject, email_body = self.generate_email(
|
549 |
-
name, company, company_info,
|
550 |
-
tone=current_tone, temperature=current_temp
|
551 |
-
)
|
552 |
-
|
553 |
-
variations.append({
|
554 |
-
'variation': i + 1,
|
555 |
-
'tone': current_tone,
|
556 |
-
'temperature': current_temp,
|
557 |
-
'subject': subject,
|
558 |
-
'email_body': email_body
|
559 |
-
})
|
560 |
-
|
561 |
-
return variations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from llama_cpp import Llama
|
4 |
+
import re
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import random
|
7 |
+
|
8 |
+
class EmailGenerator:
|
9 |
+
def __init__(self, custom_model_path=None):
|
10 |
+
self.model = None
|
11 |
+
self.model_path = custom_model_path or self._download_model()
|
12 |
+
self._load_model()
|
13 |
+
self.prompt_templates = self._load_prompt_templates()
|
14 |
+
|
15 |
+
def _download_model(self):
|
16 |
+
"""Download Vicuna-7B GGUF model from Hugging Face"""
|
17 |
+
try:
|
18 |
+
model_name = "TheBloke/vicuna-7B-v1.5-GGUF"
|
19 |
+
filename = "vicuna-7b-v1.5.Q4_K_M.gguf"
|
20 |
+
|
21 |
+
print("Downloading Vicuna-7B model... This may take a while.")
|
22 |
+
model_path = hf_hub_download(
|
23 |
+
repo_id=model_name,
|
24 |
+
filename=filename,
|
25 |
+
cache_dir="./models"
|
26 |
+
)
|
27 |
+
print(f"Model downloaded to: {model_path}")
|
28 |
+
return model_path
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error downloading model: {e}")
|
31 |
+
return None
|
32 |
+
|
33 |
+
def _load_model(self):
|
34 |
+
"""Load the GGUF model using llama-cpp-python"""
|
35 |
+
try:
|
36 |
+
if self.model_path and os.path.exists(self.model_path):
|
37 |
+
print(f"π€ Loading language model from: {self.model_path}")
|
38 |
+
self.model = Llama(
|
39 |
+
model_path=self.model_path,
|
40 |
+
n_ctx=2048, # Context length
|
41 |
+
n_threads=2, # Reduced for stability
|
42 |
+
n_batch=512, # Batch size
|
43 |
+
verbose=False,
|
44 |
+
use_mmap=True, # Memory mapping for efficiency
|
45 |
+
use_mlock=False # Don't lock memory
|
46 |
+
)
|
47 |
+
print("β
Model loaded successfully!")
|
48 |
+
|
49 |
+
# Test the model with a simple prompt
|
50 |
+
test_response = self.model("Test", max_tokens=5, temperature=0.1)
|
51 |
+
if test_response and 'choices' in test_response:
|
52 |
+
print("β
Model test successful")
|
53 |
+
else:
|
54 |
+
print("β οΈ Model test failed, will use fallback")
|
55 |
+
self.model = None
|
56 |
+
|
57 |
+
else:
|
58 |
+
print("β No valid model path found. Using advanced fallback generation.")
|
59 |
+
self.model = None
|
60 |
+
except Exception as e:
|
61 |
+
print(f"β Error loading model: {e}")
|
62 |
+
print("π Will use advanced fallback generation system")
|
63 |
+
self.model = None
|
64 |
+
|
65 |
+
def _generate_with_model(self, prompt, max_tokens=250, temperature=0.7):
|
66 |
+
"""Generate text using the loaded model with retry logic"""
|
67 |
+
try:
|
68 |
+
if self.model:
|
69 |
+
# First attempt
|
70 |
+
response = self.model(
|
71 |
+
prompt,
|
72 |
+
max_tokens=max_tokens,
|
73 |
+
temperature=temperature,
|
74 |
+
top_p=0.9,
|
75 |
+
stop=["</s>", "\n\n\n", "EXAMPLE", "Now write"],
|
76 |
+
echo=False
|
77 |
+
)
|
78 |
+
result = response['choices'][0]['text'].strip()
|
79 |
+
|
80 |
+
# Check if result is valid
|
81 |
+
if self._is_valid_output(result):
|
82 |
+
return result
|
83 |
+
|
84 |
+
# Retry with different temperature if first attempt failed
|
85 |
+
print("First attempt failed, retrying with adjusted parameters...")
|
86 |
+
response = self.model(
|
87 |
+
prompt,
|
88 |
+
max_tokens=max_tokens,
|
89 |
+
temperature=min(temperature + 0.2, 1.0),
|
90 |
+
top_p=0.8,
|
91 |
+
stop=["</s>", "\n\n\n", "EXAMPLE", "Now write"],
|
92 |
+
echo=False
|
93 |
+
)
|
94 |
+
return response['choices'][0]['text'].strip()
|
95 |
+
else:
|
96 |
+
return self._fallback_generation(prompt)
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error generating with model: {e}")
|
99 |
+
return self._fallback_generation(prompt)
|
100 |
+
|
101 |
+
def _is_valid_output(self, output):
|
102 |
+
"""Check if the generated output is valid"""
|
103 |
+
if not output or len(output) < 20:
|
104 |
+
return False
|
105 |
+
|
106 |
+
# Check for incomplete JSON
|
107 |
+
if '{' in output and '}' not in output:
|
108 |
+
return False
|
109 |
+
|
110 |
+
# Check for common failure patterns
|
111 |
+
failure_patterns = [
|
112 |
+
'I cannot', 'I apologize', 'I\'m sorry',
|
113 |
+
'[Your Name]', '[Company]', '[Product]',
|
114 |
+
'EXAMPLE', 'Now write'
|
115 |
+
]
|
116 |
+
|
117 |
+
return not any(pattern in output for pattern in failure_patterns)
|
118 |
+
|
119 |
+
def _parse_json_response(self, response):
|
120 |
+
"""Parse JSON response from the model"""
|
121 |
+
try:
|
122 |
+
# Clean up the response
|
123 |
+
response = response.strip()
|
124 |
+
|
125 |
+
# Extract JSON if it's embedded in text
|
126 |
+
json_match = re.search(r'\{[^}]*"subject"[^}]*\}', response, re.DOTALL)
|
127 |
+
if json_match:
|
128 |
+
response = json_match.group(0)
|
129 |
+
|
130 |
+
# Parse JSON
|
131 |
+
data = json.loads(response)
|
132 |
+
|
133 |
+
subject = data.get('subject', '').strip()
|
134 |
+
body = data.get('body', '').strip()
|
135 |
+
|
136 |
+
# Clean up quotes and formatting
|
137 |
+
subject = subject.strip('"\'')
|
138 |
+
body = body.strip('"\'')
|
139 |
+
|
140 |
+
return subject, body
|
141 |
+
|
142 |
+
except (json.JSONDecodeError, KeyError) as e:
|
143 |
+
print(f"JSON parsing error: {e}")
|
144 |
+
return self._extract_fallback_content(response)
|
145 |
+
|
146 |
+
def _extract_fallback_content(self, response):
|
147 |
+
"""Extract subject and body from non-JSON response"""
|
148 |
+
lines = response.split('\n')
|
149 |
+
subject = ""
|
150 |
+
body = ""
|
151 |
+
|
152 |
+
# Look for subject line
|
153 |
+
for line in lines:
|
154 |
+
if any(word in line.lower() for word in ['subject:', 'subj:', 'sub:']):
|
155 |
+
subject = re.sub(r'^[^:]*:', '', line).strip()
|
156 |
+
break
|
157 |
+
|
158 |
+
# Look for body
|
159 |
+
body_started = False
|
160 |
+
body_lines = []
|
161 |
+
for line in lines:
|
162 |
+
if body_started:
|
163 |
+
if line.strip():
|
164 |
+
body_lines.append(line.strip())
|
165 |
+
elif any(word in line.lower() for word in ['body:', 'email:', 'hi ', 'dear ', 'hello ']):
|
166 |
+
body_started = True
|
167 |
+
clean_line = re.sub(r'^[^:]*:', '', line).strip()
|
168 |
+
if clean_line and not clean_line.lower().startswith(('body', 'email')):
|
169 |
+
body_lines.append(clean_line)
|
170 |
+
|
171 |
+
body = '\n'.join(body_lines) if body_lines else response
|
172 |
+
|
173 |
+
# Fallback if parsing failed
|
174 |
+
if not subject:
|
175 |
+
subject = f"Partnership opportunity"
|
176 |
+
if not body or len(body) < 20:
|
177 |
+
body = "Hi,\n\nI'd love to explore how we can help your business grow.\n\nInterested in a quick call?\n\nBest regards"
|
178 |
+
|
179 |
+
return subject, body
|
180 |
+
|
181 |
+
def _advanced_fallback_generation(self, name, company, company_info, tone="Professional"):
|
182 |
+
"""Advanced fallback with company-specific personalization"""
|
183 |
+
|
184 |
+
# Extract industry and key details from company info
|
185 |
+
industry_hints = self._extract_industry_details(company_info)
|
186 |
+
|
187 |
+
# Create tone-specific templates
|
188 |
+
if tone.lower() == "friendly":
|
189 |
+
templates = [
|
190 |
+
{
|
191 |
+
"subject": f"Love what {company} is doing{industry_hints['subject_suffix']}",
|
192 |
+
"body": f"Hi {name},\n\nJust came across {company}{industry_hints['context']} - really impressive work!\n\nWe've helped similar {industry_hints['industry']} companies {industry_hints['benefit']}. Mind if I share a quick example?\n\n15-minute call work for you?\n\nCheers,\nAlex"
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"subject": f"Quick idea for {company}",
|
196 |
+
"body": f"Hi {name},\n\n{company}'s {industry_hints['focus']} caught my eye. We just helped a similar company {industry_hints['specific_result']}.\n\nWorth exploring for {company}?\n\nBest,\nSam"
|
197 |
+
}
|
198 |
+
]
|
199 |
+
elif tone.lower() == "direct":
|
200 |
+
templates = [
|
201 |
+
{
|
202 |
+
"subject": f"{company} + {industry_hints['solution']}?",
|
203 |
+
"body": f"Hi {name},\n\n{industry_hints['direct_opener']} for {company}.\n\nResult: {industry_hints['specific_result']}.\n\nInterested? 10-minute call?\n\n-Alex"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"subject": f"ROI opportunity for {company}",
|
207 |
+
"body": f"{name},\n\nQuick question: Is {company} looking to {industry_hints['goal']}?\n\nWe reduced costs by 35% for a similar {industry_hints['industry']} company.\n\nWorth a conversation?\n\nBest,\nSam"
|
208 |
+
}
|
209 |
+
]
|
210 |
+
else: # Professional
|
211 |
+
templates = [
|
212 |
+
{
|
213 |
+
"subject": f"Operational efficiency opportunity - {company}",
|
214 |
+
"body": f"Hi {name},\n\nI noticed {company} specializes in {industry_hints['specialty']}. We recently helped a similar organization {industry_hints['professional_result']}.\n\nWould you be open to a brief conversation about how this might apply to {company}?\n\nBest regards,\nAlex Thompson"
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"subject": f"Thought on {company}'s {industry_hints['focus']}",
|
218 |
+
"body": f"Hi {name},\n\n{company}'s work in {industry_hints['area']} is impressive. We've developed solutions that help {industry_hints['industry']} companies {industry_hints['benefit']}.\n\nWould you be interested in a 15-minute discussion about potential applications for {company}?\n\nBest regards,\nSarah Chen"
|
219 |
+
}
|
220 |
+
]
|
221 |
+
|
222 |
+
template = random.choice(templates)
|
223 |
+
return template["subject"], template["body"]
|
224 |
+
|
225 |
+
def _extract_industry_details(self, company_info):
|
226 |
+
"""Extract industry-specific details for personalization"""
|
227 |
+
info_lower = company_info.lower() if company_info else ""
|
228 |
+
|
229 |
+
if any(word in info_lower for word in ['tech', 'software', 'saas', 'ai', 'digital']):
|
230 |
+
return {
|
231 |
+
'industry': 'tech',
|
232 |
+
'specialty': 'technology solutions',
|
233 |
+
'focus': 'innovation',
|
234 |
+
'area': 'technology',
|
235 |
+
'benefit': 'scale their platforms and reduce technical debt',
|
236 |
+
'goal': 'optimize your development pipeline',
|
237 |
+
'solution': 'DevOps automation',
|
238 |
+
'context': ' and their tech stack',
|
239 |
+
'subject_suffix': ' with tech',
|
240 |
+
'direct_opener': 'We implemented automated testing',
|
241 |
+
'specific_result': 'reduced deployment time by 60%',
|
242 |
+
'professional_result': 'achieve 40% faster time-to-market for new features'
|
243 |
+
}
|
244 |
+
elif any(word in info_lower for word in ['manufactur', 'industrial', 'equipment', 'materials']):
|
245 |
+
return {
|
246 |
+
'industry': 'manufacturing',
|
247 |
+
'specialty': 'industrial operations',
|
248 |
+
'focus': 'production efficiency',
|
249 |
+
'area': 'manufacturing',
|
250 |
+
'benefit': 'optimize their production lines and reduce waste',
|
251 |
+
'goal': 'increase production efficiency',
|
252 |
+
'solution': 'process optimization',
|
253 |
+
'context': ' and their manufacturing capabilities',
|
254 |
+
'subject_suffix': ' in manufacturing',
|
255 |
+
'direct_opener': 'We streamlined production workflows',
|
256 |
+
'specific_result': 'increased throughput by 45%',
|
257 |
+
'professional_result': 'achieve 30% improvement in production efficiency'
|
258 |
+
}
|
259 |
+
elif any(word in info_lower for word in ['health', 'medical', 'pharma', 'clinical']):
|
260 |
+
return {
|
261 |
+
'industry': 'healthcare',
|
262 |
+
'specialty': 'healthcare solutions',
|
263 |
+
'focus': 'patient outcomes',
|
264 |
+
'area': 'healthcare',
|
265 |
+
'benefit': 'improve patient outcomes while reducing costs',
|
266 |
+
'goal': 'enhance patient care efficiency',
|
267 |
+
'solution': 'workflow optimization',
|
268 |
+
'context': ' and their patient care approach',
|
269 |
+
'subject_suffix': ' in healthcare',
|
270 |
+
'direct_opener': 'We optimized patient flow systems',
|
271 |
+
'specific_result': 'reduced wait times by 50%',
|
272 |
+
'professional_result': 'achieve 25% improvement in patient satisfaction scores'
|
273 |
+
}
|
274 |
+
else:
|
275 |
+
return {
|
276 |
+
'industry': 'business',
|
277 |
+
'specialty': 'business operations',
|
278 |
+
'focus': 'growth',
|
279 |
+
'area': 'operations',
|
280 |
+
'benefit': 'streamline operations and drive growth',
|
281 |
+
'goal': 'scale your operations',
|
282 |
+
'solution': 'process optimization',
|
283 |
+
'context': ' and their business model',
|
284 |
+
'subject_suffix': '',
|
285 |
+
'direct_opener': 'We automated key business processes',
|
286 |
+
'specific_result': 'increased efficiency by 40%',
|
287 |
+
'professional_result': 'achieve 35% operational cost reduction'
|
288 |
+
}
|
289 |
+
|
290 |
+
def _load_prompt_templates(self):
|
291 |
+
"""Load sophisticated prompt templates for different use cases"""
|
292 |
+
return {
|
293 |
+
"few_shot_template": '''You are an elite B2B sales copywriter. Write ONE personalized cold email that sounds natural and converts.
|
294 |
+
|
295 |
+
<examples>
|
296 |
+
EXAMPLE 1:
|
297 |
+
SUBJECT: Quick question about Acme's EU expansion
|
298 |
+
BODY: Hi Sarah,
|
299 |
+
|
300 |
+
Saw Acme just launched in Berlin β congrats! We helped Contoso reduce their GDPR compliance prep by 68% with a simple automation.
|
301 |
+
|
302 |
+
Worth a 10-minute chat about how this could apply to your EU rollout?
|
303 |
+
|
304 |
+
Best,
|
305 |
+
Alex
|
306 |
+
|
307 |
+
EXAMPLE 2:
|
308 |
+
SUBJECT: Thought on TechCorp's materials testing
|
309 |
+
BODY: Hi John,
|
310 |
+
|
311 |
+
Noticed TechCorp specializes in X-ray spectroscopy equipment. We just helped a similar lab increase throughput 40% with workflow optimization.
|
312 |
+
|
313 |
+
Mind if I share what worked for them? 15-minute call?
|
314 |
+
|
315 |
+
Best,
|
316 |
+
Sam
|
317 |
+
|
318 |
+
EXAMPLE 3:
|
319 |
+
SUBJECT: Manufacturing efficiency idea for IndustrialCorp
|
320 |
+
BODY: Hi Mike,
|
321 |
+
|
322 |
+
IndustrialCorp's production line setup caught my attention. We automated similar processes for MetalWorks, reducing their cycle time by 35%.
|
323 |
+
|
324 |
+
Open to a brief conversation about applications for your facility?
|
325 |
+
|
326 |
+
Best regards,
|
327 |
+
Jennifer
|
328 |
+
</examples>
|
329 |
+
|
330 |
+
Now write an email for:
|
331 |
+
Name: {name}
|
332 |
+
Company: {company}
|
333 |
+
Company Info: {company_context}
|
334 |
+
Tone: {tone}
|
335 |
+
|
336 |
+
Requirements:
|
337 |
+
- Use the company info naturally in the first 2 lines
|
338 |
+
- Maximum 70 words in body (excluding signature)
|
339 |
+
- Clear yes/no question at the end
|
340 |
+
- No placeholders like [Your Name] or [Company]
|
341 |
+
- Professional but conversational
|
342 |
+
- Include specific benefit or result if possible
|
343 |
+
|
344 |
+
Return ONLY this JSON format:
|
345 |
+
{{"subject": "...", "body": "..."}}''',
|
346 |
+
|
347 |
+
"industry_specific": {
|
348 |
+
"technology": '''Write a cold email for a tech company. Focus on efficiency, scalability, and competitive advantage.''',
|
349 |
+
"healthcare": '''Write a cold email for a healthcare company. Focus on patient outcomes, compliance, and cost reduction.''',
|
350 |
+
"manufacturing": '''Write a cold email for a manufacturing company. Focus on production efficiency, quality, and cost savings.''',
|
351 |
+
"services": '''Write a cold email for a service company. Focus on client satisfaction, process improvement, and growth.''',
|
352 |
+
"default": '''Write a cold email that focuses on business growth and operational efficiency.'''
|
353 |
+
}
|
354 |
+
}
|
355 |
+
|
356 |
+
def _extract_industry(self, company_info):
|
357 |
+
"""Extract industry type from company information"""
|
358 |
+
company_lower = company_info.lower()
|
359 |
+
|
360 |
+
if any(word in company_lower for word in ['tech', 'software', 'saas', 'ai', 'digital', 'app', 'platform']):
|
361 |
+
return 'technology'
|
362 |
+
elif any(word in company_lower for word in ['health', 'medical', 'pharma', 'hospital', 'clinic']):
|
363 |
+
return 'healthcare'
|
364 |
+
elif any(word in company_lower for word in ['manufactur', 'factory', 'production', 'industrial', 'equipment']):
|
365 |
+
return 'manufacturing'
|
366 |
+
elif any(word in company_lower for word in ['service', 'consulting', 'agency', 'firm']):
|
367 |
+
return 'services'
|
368 |
+
else:
|
369 |
+
return 'default'
|
370 |
+
|
371 |
+
def _create_company_context(self, company, company_info):
|
372 |
+
"""Create focused company context for the prompt"""
|
373 |
+
# Extract key information and clean it up
|
374 |
+
context_parts = []
|
375 |
+
|
376 |
+
if company_info and len(company_info) > 10:
|
377 |
+
# Extract meaningful phrases
|
378 |
+
sentences = re.split(r'[.!?]+', company_info)
|
379 |
+
for sentence in sentences[:3]: # First 3 sentences
|
380 |
+
sentence = sentence.strip()
|
381 |
+
if len(sentence) > 20 and not sentence.startswith('Title:'):
|
382 |
+
# Remove common fluff words
|
383 |
+
sentence = re.sub(r'Description:\s*', '', sentence)
|
384 |
+
sentence = re.sub(r'Company Website:\s*', '', sentence)
|
385 |
+
sentence = re.sub(r'LinkedIn:\s*', '', sentence)
|
386 |
+
if sentence:
|
387 |
+
context_parts.append(sentence)
|
388 |
+
|
389 |
+
if not context_parts:
|
390 |
+
context_parts.append(f"{company} is a company in their industry")
|
391 |
+
|
392 |
+
return ' | '.join(context_parts[:2]) # Max 2 key points
|
393 |
+
|
394 |
+
def generate_email(self, name, company, company_info, tone="Professional", temperature=0.7):
|
395 |
+
"""Generate both subject and email body using advanced prompting"""
|
396 |
+
# Clean up and prepare context
|
397 |
+
company_context = self._create_company_context(company, company_info)
|
398 |
+
|
399 |
+
# Calibrate temperature for production readiness
|
400 |
+
if temperature > 1.0:
|
401 |
+
temperature = 0.8 # Cap at 0.8 for production readiness
|
402 |
+
|
403 |
+
# Try AI generation first
|
404 |
+
if self.model:
|
405 |
+
try:
|
406 |
+
# Build the prompt using few-shot template
|
407 |
+
prompt = self.prompt_templates["few_shot_template"].format(
|
408 |
+
name=name,
|
409 |
+
company=company,
|
410 |
+
company_context=company_context,
|
411 |
+
tone=tone.lower()
|
412 |
+
)
|
413 |
+
|
414 |
+
# Generate with model
|
415 |
+
response = self._generate_with_model(prompt, max_tokens=200, temperature=temperature)
|
416 |
+
|
417 |
+
# Parse the response
|
418 |
+
subject, body = self._parse_json_response(response)
|
419 |
+
|
420 |
+
# Polish the content
|
421 |
+
subject, body = self._polish_email_content(subject, body)
|
422 |
+
|
423 |
+
# Validate quality
|
424 |
+
quality_score, issues = self._validate_email_quality(subject, body, name, company)
|
425 |
+
|
426 |
+
# If quality is good enough, return it
|
427 |
+
if quality_score >= 70 and 'placeholders' not in issues:
|
428 |
+
print(f"β
AI generated email (Quality: {quality_score}%)")
|
429 |
+
return subject, body
|
430 |
+
else:
|
431 |
+
print(f"β οΈ AI output quality too low ({quality_score}%), using advanced fallback")
|
432 |
+
|
433 |
+
except Exception as e:
|
434 |
+
print(f"β AI generation failed: {e}, using advanced fallback")
|
435 |
+
|
436 |
+
# Use advanced fallback system
|
437 |
+
print("π Using advanced fallback generation")
|
438 |
+
subject, body = self._advanced_fallback_generation(name, company, company_info, tone)
|
439 |
+
|
440 |
+
# Always polish fallback content
|
441 |
+
subject, body = self._polish_email_content(subject, body)
|
442 |
+
|
443 |
+
return subject, body
|
444 |
+
|
445 |
+
def _clean_subject(self, subject, company):
|
446 |
+
"""Clean and validate subject line"""
|
447 |
+
if not subject or len(subject) < 5:
|
448 |
+
return f"Quick question about {company}"
|
449 |
+
|
450 |
+
# Remove common prefixes
|
451 |
+
subject = re.sub(r'^(Subject|SUBJECT):\s*', '', subject, flags=re.IGNORECASE)
|
452 |
+
subject = subject.strip('"\'')
|
453 |
+
|
454 |
+
# Ensure reasonable length
|
455 |
+
if len(subject) > 60:
|
456 |
+
subject = subject[:57] + "..."
|
457 |
+
|
458 |
+
return subject
|
459 |
+
|
460 |
+
def _clean_body(self, body, name):
|
461 |
+
"""Clean and validate email body"""
|
462 |
+
if not body or len(body) < 20:
|
463 |
+
return f"Hi {name},\n\nI'd love to discuss how we can help your business grow.\n\nInterested in a quick call?\n\nBest regards"
|
464 |
+
|
465 |
+
# Remove common prefixes
|
466 |
+
body = re.sub(r'^(Body|BODY|Email|EMAIL):\s*', '', body, flags=re.IGNORECASE)
|
467 |
+
|
468 |
+
# Ensure proper greeting
|
469 |
+
if not body.lower().startswith(('hi ', 'hello ', 'dear ')):
|
470 |
+
body = f"Hi {name},\n\n{body}"
|
471 |
+
|
472 |
+
# Ensure proper closing
|
473 |
+
closing_patterns = ['best regards', 'best,', 'sincerely', 'regards,', 'cheers,']
|
474 |
+
has_closing = any(pattern in body.lower() for pattern in closing_patterns)
|
475 |
+
|
476 |
+
if not has_closing:
|
477 |
+
if not body.endswith('\n'):
|
478 |
+
body += '\n'
|
479 |
+
body += '\nBest regards'
|
480 |
+
|
481 |
+
return body
|
482 |
+
|
483 |
+
def _polish_email_content(self, subject, body):
|
484 |
+
"""Polish email content for grammar and professionalism"""
|
485 |
+
|
486 |
+
# Fix common grammar issues
|
487 |
+
body = re.sub(r'\s+', ' ', body) # Multiple spaces
|
488 |
+
body = re.sub(r'([.!?])\s*([a-z])', r'\1 \2', body) # Space after punctuation
|
489 |
+
body = re.sub(r'(\w)\s*\n\s*(\w)', r'\1\n\n\2', body) # Proper paragraph spacing
|
490 |
+
|
491 |
+
# Ensure professional closing
|
492 |
+
if not re.search(r'(Best regards|Best|Sincerely|Cheers),?\s*\n?[A-Z][a-z]+', body):
|
493 |
+
if body.strip().endswith(','):
|
494 |
+
body = body.strip() + '\n\nBest regards,\nAlex'
|
495 |
+
else:
|
496 |
+
body = body.strip() + '\n\nBest regards,\nAlex'
|
497 |
+
|
498 |
+
# Fix subject line
|
499 |
+
subject = subject.strip()
|
500 |
+
if len(subject) > 65:
|
501 |
+
subject = subject[:62] + "..."
|
502 |
+
|
503 |
+
# Capitalize first letter of subject if not already
|
504 |
+
if subject and subject[0].islower():
|
505 |
+
subject = subject[0].upper() + subject[1:]
|
506 |
+
|
507 |
+
return subject, body
|
508 |
+
|
509 |
+
def _validate_email_quality(self, subject, body, name, company):
|
510 |
+
"""Validate email quality and return quality score"""
|
511 |
+
issues = []
|
512 |
+
|
513 |
+
# Check subject length
|
514 |
+
if len(subject) < 10 or len(subject) > 65:
|
515 |
+
issues.append("subject_length")
|
516 |
+
|
517 |
+
# Check body length
|
518 |
+
words = len(body.split())
|
519 |
+
if words < 20 or words > 150:
|
520 |
+
issues.append("body_length")
|
521 |
+
|
522 |
+
# Check for placeholders
|
523 |
+
if '[Your Name]' in body or '[Company]' in body or '{{' in body:
|
524 |
+
issues.append("placeholders")
|
525 |
+
|
526 |
+
# Check personalization
|
527 |
+
if name not in body or company not in body:
|
528 |
+
issues.append("personalization")
|
529 |
+
|
530 |
+
# Check for call-to-action
|
531 |
+
cta_phrases = ['call', 'conversation', 'chat', 'discuss', 'talk', 'meeting', 'connect']
|
532 |
+
if not any(phrase in body.lower() for phrase in cta_phrases):
|
533 |
+
issues.append("no_cta")
|
534 |
+
|
535 |
+
quality_score = max(0, 100 - (len(issues) * 15))
|
536 |
+
return quality_score, issues
|
537 |
+
|
538 |
+
def generate_multiple_variations(self, name, company, company_info, num_variations=3, tone="Professional"):
|
539 |
+
"""Generate multiple email variations with different approaches"""
|
540 |
+
variations = []
|
541 |
+
tones = ["Professional", "Friendly", "Direct"]
|
542 |
+
temperatures = [0.6, 0.7, 0.8]
|
543 |
+
|
544 |
+
for i in range(num_variations):
|
545 |
+
current_tone = tones[i % len(tones)]
|
546 |
+
current_temp = temperatures[i % len(temperatures)]
|
547 |
+
|
548 |
+
subject, email_body = self.generate_email(
|
549 |
+
name, company, company_info,
|
550 |
+
tone=current_tone, temperature=current_temp
|
551 |
+
)
|
552 |
+
|
553 |
+
variations.append({
|
554 |
+
'variation': i + 1,
|
555 |
+
'tone': current_tone,
|
556 |
+
'temperature': current_temp,
|
557 |
+
'subject': subject,
|
558 |
+
'email_body': email_body
|
559 |
+
})
|
560 |
+
|
561 |
+
return variations
|
562 |
+
|
563 |
+
def generate_email_v2(self, recipient_name, recipient_email, company_name, company_data, tone="professional", temperature=0.7):
|
564 |
+
"""Compatibility method for different calling signatures"""
|
565 |
+
# Extract company info from company_data if it's a dict
|
566 |
+
if isinstance(company_data, dict):
|
567 |
+
company_info = company_data.get('description', f"Company: {company_name}")
|
568 |
+
else:
|
569 |
+
company_info = str(company_data) if company_data else f"Company: {company_name}"
|
570 |
+
|
571 |
+
# Call the main generate_email method
|
572 |
+
subject, body = self.generate_email(
|
573 |
+
name=recipient_name,
|
574 |
+
company=company_name,
|
575 |
+
company_info=company_info,
|
576 |
+
tone=tone,
|
577 |
+
temperature=temperature
|
578 |
+
)
|
579 |
+
|
580 |
+
# Return in the expected format
|
581 |
+
return {
|
582 |
+
'subject': subject,
|
583 |
+
'content': body,
|
584 |
+
'quality_score': 8.0
|
585 |
+
}
|