Spaces:
Running
Running
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import sqlite3
|
4 |
+
import os
|
5 |
+
from datetime import datetime
|
6 |
+
import time
|
7 |
+
from scraper import LinkedInScraper
|
8 |
+
from email_gen import EmailGenerator
|
9 |
+
|
10 |
+
# Configure Streamlit page
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Cold Email Outreach Assistant",
|
13 |
+
page_icon="π§",
|
14 |
+
layout="wide"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Initialize session state
|
18 |
+
if 'processed_data' not in st.session_state:
|
19 |
+
st.session_state.processed_data = None
|
20 |
+
if 'email_generator' not in st.session_state:
|
21 |
+
st.session_state.email_generator = None
|
22 |
+
|
23 |
+
def init_database():
|
24 |
+
"""Initialize SQLite database for caching"""
|
25 |
+
conn = sqlite3.connect('leads.db')
|
26 |
+
cursor = conn.cursor()
|
27 |
+
|
28 |
+
cursor.execute('''
|
29 |
+
CREATE TABLE IF NOT EXISTS scraped_data (
|
30 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
31 |
+
name TEXT,
|
32 |
+
email TEXT,
|
33 |
+
company TEXT,
|
34 |
+
linkedin_url TEXT,
|
35 |
+
scraped_info TEXT,
|
36 |
+
generated_subject TEXT,
|
37 |
+
generated_email TEXT,
|
38 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
39 |
+
)
|
40 |
+
''')
|
41 |
+
|
42 |
+
conn.commit()
|
43 |
+
conn.close()
|
44 |
+
|
45 |
+
def save_to_database(data):
|
46 |
+
"""Save processed data to database"""
|
47 |
+
conn = sqlite3.connect('leads.db')
|
48 |
+
cursor = conn.cursor()
|
49 |
+
|
50 |
+
for _, row in data.iterrows():
|
51 |
+
cursor.execute('''
|
52 |
+
INSERT OR REPLACE INTO scraped_data
|
53 |
+
(name, email, company, linkedin_url, scraped_info, generated_subject, generated_email)
|
54 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
55 |
+
''', (
|
56 |
+
row['name'], row['email'], row['company'], row['linkedin_url'],
|
57 |
+
row.get('scraped_info', ''), row.get('generated_subject', ''),
|
58 |
+
row.get('generated_email', '')
|
59 |
+
))
|
60 |
+
|
61 |
+
conn.commit()
|
62 |
+
conn.close()
|
63 |
+
|
64 |
+
def load_from_database():
|
65 |
+
"""Load data from database"""
|
66 |
+
conn = sqlite3.connect('leads.db')
|
67 |
+
df = pd.read_sql_query('SELECT * FROM scraped_data ORDER BY created_at DESC', conn)
|
68 |
+
conn.close()
|
69 |
+
return df
|
70 |
+
|
71 |
+
def main():
|
72 |
+
st.title("π§ Cold Email Outreach Assistant")
|
73 |
+
st.markdown("Upload your leads CSV and generate personalized cold emails using AI")
|
74 |
+
|
75 |
+
# Initialize database
|
76 |
+
init_database()
|
77 |
+
|
78 |
+
# Sidebar for configuration
|
79 |
+
with st.sidebar:
|
80 |
+
st.header("βοΈ Configuration")
|
81 |
+
|
82 |
+
# Model configuration
|
83 |
+
st.subheader("AI Model Settings")
|
84 |
+
model_option = st.selectbox(
|
85 |
+
"Model Type",
|
86 |
+
["Download Vicuna-7B (Recommended)", "Use Custom Model Path"]
|
87 |
+
)
|
88 |
+
|
89 |
+
if model_option == "Use Custom Model Path":
|
90 |
+
custom_model_path = st.text_input("Custom Model Path", "")
|
91 |
+
else:
|
92 |
+
custom_model_path = None
|
93 |
+
|
94 |
+
# Email generation settings
|
95 |
+
st.subheader("π§ Email Generation")
|
96 |
+
tone = st.selectbox(
|
97 |
+
"Email Tone",
|
98 |
+
["Professional", "Friendly", "Direct", "Authoritative"],
|
99 |
+
index=0,
|
100 |
+
help="Choose the tone for generated emails"
|
101 |
+
)
|
102 |
+
|
103 |
+
temperature = st.slider(
|
104 |
+
"Creativity Level",
|
105 |
+
min_value=0.3,
|
106 |
+
max_value=1.0,
|
107 |
+
value=0.7,
|
108 |
+
step=0.1,
|
109 |
+
help="Lower = more conservative, Higher = more creative"
|
110 |
+
)
|
111 |
+
|
112 |
+
generate_variations = st.checkbox(
|
113 |
+
"Generate Multiple Variations",
|
114 |
+
value=False,
|
115 |
+
help="Generate 3 different email variations per lead"
|
116 |
+
)
|
117 |
+
|
118 |
+
# Scraping configuration
|
119 |
+
st.subheader("π Scraping Settings")
|
120 |
+
scrape_timeout = st.slider("Scrape Timeout (seconds)", 5, 30, 10)
|
121 |
+
use_selenium = st.checkbox("Use Selenium (slower but more reliable)", value=False)
|
122 |
+
|
123 |
+
# Main content area
|
124 |
+
tab1, tab2, tab3 = st.tabs(["π€ Upload & Process", "π Results", "π History"])
|
125 |
+
|
126 |
+
with tab1:
|
127 |
+
st.header("Upload Your Leads CSV")
|
128 |
+
|
129 |
+
# File upload
|
130 |
+
uploaded_file = st.file_uploader(
|
131 |
+
"Choose a CSV file",
|
132 |
+
type="csv",
|
133 |
+
help="CSV should contain columns: name, email, company, linkedin_url"
|
134 |
+
)
|
135 |
+
|
136 |
+
if uploaded_file is not None:
|
137 |
+
try:
|
138 |
+
# Read CSV
|
139 |
+
df = pd.read_csv(uploaded_file)
|
140 |
+
|
141 |
+
# Validate columns
|
142 |
+
required_columns = ['name', 'email', 'company', 'linkedin_url']
|
143 |
+
missing_columns = [col for col in required_columns if col not in df.columns]
|
144 |
+
|
145 |
+
if missing_columns:
|
146 |
+
st.error(f"Missing required columns: {', '.join(missing_columns)}")
|
147 |
+
st.info("Required columns: name, email, company, linkedin_url")
|
148 |
+
else:
|
149 |
+
st.success(f"β
CSV loaded successfully! Found {len(df)} leads")
|
150 |
+
st.dataframe(df.head())
|
151 |
+
|
152 |
+
# Process data button
|
153 |
+
if st.button("π Start Processing", type="primary"):
|
154 |
+
process_leads(df, scrape_timeout, use_selenium, custom_model_path, tone, temperature, generate_variations)
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
st.error(f"Error reading CSV: {str(e)}")
|
158 |
+
|
159 |
+
with tab2:
|
160 |
+
st.header("Processing Results")
|
161 |
+
|
162 |
+
if st.session_state.processed_data is not None:
|
163 |
+
df = st.session_state.processed_data
|
164 |
+
|
165 |
+
# Display results
|
166 |
+
st.success(f"β
Processed {len(df)} leads successfully!")
|
167 |
+
|
168 |
+
# Show detailed results
|
169 |
+
for idx, row in df.iterrows():
|
170 |
+
with st.expander(f"π {row['name']} - {row['company']} {'π―' if row.get('tone_used') else ''}"):
|
171 |
+
col1, col2, col3 = st.columns([2, 3, 1])
|
172 |
+
|
173 |
+
with col1:
|
174 |
+
st.subheader("π Scraped Information")
|
175 |
+
st.text_area("Company Info", row.get('scraped_info', 'No info scraped'), height=100, key=f"info_{idx}")
|
176 |
+
|
177 |
+
# Show generation settings if available
|
178 |
+
if row.get('tone_used'):
|
179 |
+
st.write(f"**Tone:** {row.get('tone_used', 'N/A')}")
|
180 |
+
st.write(f"**Temperature:** {row.get('temperature_used', 'N/A')}")
|
181 |
+
|
182 |
+
with col2:
|
183 |
+
st.subheader("π§ Generated Email")
|
184 |
+
subject = row.get('generated_subject', 'No subject generated')
|
185 |
+
email_body = row.get('generated_email', 'No email generated')
|
186 |
+
|
187 |
+
st.text_area("Subject", subject, height=50, key=f"subject_{idx}")
|
188 |
+
st.text_area("Email Body", email_body, height=250, key=f"email_{idx}")
|
189 |
+
|
190 |
+
with col3:
|
191 |
+
st.subheader("π Quality")
|
192 |
+
if subject and email_body:
|
193 |
+
subject_len = len(subject)
|
194 |
+
# Get main body without variations
|
195 |
+
main_body = email_body.split('--- VARIATIONS ---')[0].strip()
|
196 |
+
body_words = len(main_body.split())
|
197 |
+
|
198 |
+
# Quality indicators
|
199 |
+
if 15 <= subject_len <= 65:
|
200 |
+
st.success(f"β
Subject: {subject_len} chars")
|
201 |
+
else:
|
202 |
+
st.warning(f"β οΈ Subject: {subject_len} chars")
|
203 |
+
|
204 |
+
if 25 <= body_words <= 100:
|
205 |
+
st.success(f"β
Body: {body_words} words")
|
206 |
+
else:
|
207 |
+
st.warning(f"β οΈ Body: {body_words} words")
|
208 |
+
|
209 |
+
# Check for placeholders
|
210 |
+
if '[Your Name]' in email_body or '{' in email_body:
|
211 |
+
st.error("β Contains placeholders")
|
212 |
+
else:
|
213 |
+
st.success("β
No placeholders")
|
214 |
+
|
215 |
+
# Check for personalization
|
216 |
+
if row['name'] in main_body and row['company'] in main_body:
|
217 |
+
st.success("β
Well personalized")
|
218 |
+
else:
|
219 |
+
st.warning("β οΈ Low personalization")
|
220 |
+
|
221 |
+
# Check for CTA
|
222 |
+
cta_words = ['call', 'conversation', 'chat', 'discuss', 'talk', 'meeting']
|
223 |
+
if any(word in main_body.lower() for word in cta_words):
|
224 |
+
st.success("β
Has call-to-action")
|
225 |
+
else:
|
226 |
+
st.warning("β οΈ Weak call-to-action")
|
227 |
+
|
228 |
+
# Overall quality score
|
229 |
+
quality_score = 0
|
230 |
+
if 15 <= subject_len <= 65: quality_score += 20
|
231 |
+
if 25 <= body_words <= 100: quality_score += 25
|
232 |
+
if '[Your Name]' not in email_body: quality_score += 25
|
233 |
+
if row['name'] in main_body and row['company'] in main_body: quality_score += 20
|
234 |
+
if any(word in main_body.lower() for word in cta_words): quality_score += 10
|
235 |
+
|
236 |
+
if quality_score >= 80:
|
237 |
+
st.success(f"π Overall: {quality_score}% - Ready to send!")
|
238 |
+
elif quality_score >= 60:
|
239 |
+
st.warning(f"π Overall: {quality_score}% - Needs polish")
|
240 |
+
else:
|
241 |
+
st.error(f"π§ Overall: {quality_score}% - Needs work")
|
242 |
+
|
243 |
+
# Quick copy button
|
244 |
+
email_text = f"Subject: {subject}\n\n{email_body}"
|
245 |
+
st.text_area("Copy Email", email_text, height=100, key=f"copy_{idx}")
|
246 |
+
|
247 |
+
# Export functionality
|
248 |
+
if st.button("π₯ Export to CSV"):
|
249 |
+
csv_data = df.to_csv(index=False)
|
250 |
+
st.download_button(
|
251 |
+
label="β¬οΈ Download CSV",
|
252 |
+
data=csv_data,
|
253 |
+
file_name=f"cold_emails_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
254 |
+
mime="text/csv"
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
st.info("π Upload and process a CSV file to see results here")
|
258 |
+
|
259 |
+
with tab3:
|
260 |
+
st.header("Processing History")
|
261 |
+
|
262 |
+
# Load and display historical data
|
263 |
+
try:
|
264 |
+
history_df = load_from_database()
|
265 |
+
if not history_df.empty:
|
266 |
+
st.dataframe(history_df)
|
267 |
+
|
268 |
+
# Export history
|
269 |
+
if st.button("π₯ Export History"):
|
270 |
+
csv_data = history_df.to_csv(index=False)
|
271 |
+
st.download_button(
|
272 |
+
label="β¬οΈ Download History CSV",
|
273 |
+
data=csv_data,
|
274 |
+
file_name=f"email_history_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
275 |
+
mime="text/csv"
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
st.info("No historical data found")
|
279 |
+
except Exception as e:
|
280 |
+
st.error(f"Error loading history: {str(e)}")
|
281 |
+
|
282 |
+
def process_leads(df, scrape_timeout, use_selenium, custom_model_path, tone, temperature, generate_variations):
|
283 |
+
"""Process the uploaded leads with enhanced email generation"""
|
284 |
+
progress_bar = st.progress(0)
|
285 |
+
status_text = st.empty()
|
286 |
+
|
287 |
+
try:
|
288 |
+
# Initialize components
|
289 |
+
status_text.text("π§ Initializing scraper...")
|
290 |
+
scraper = LinkedInScraper(timeout=scrape_timeout, use_selenium=use_selenium)
|
291 |
+
|
292 |
+
status_text.text("π€ Initializing AI model...")
|
293 |
+
if st.session_state.email_generator is None:
|
294 |
+
st.session_state.email_generator = EmailGenerator(custom_model_path)
|
295 |
+
|
296 |
+
email_gen = st.session_state.email_generator
|
297 |
+
|
298 |
+
# Process each lead
|
299 |
+
processed_data = []
|
300 |
+
total_leads = len(df)
|
301 |
+
|
302 |
+
for idx, row in df.iterrows():
|
303 |
+
status_text.text(f"π Processing {row['name']} ({idx + 1}/{total_leads})")
|
304 |
+
|
305 |
+
# Scrape information
|
306 |
+
scraped_info = scraper.scrape_linkedin_or_company(
|
307 |
+
row['linkedin_url'],
|
308 |
+
row['company']
|
309 |
+
)
|
310 |
+
|
311 |
+
# Generate email with new parameters
|
312 |
+
status_text.text(f"βοΈ Generating email for {row['name']} ({tone} tone)...")
|
313 |
+
|
314 |
+
if generate_variations:
|
315 |
+
# Generate multiple variations
|
316 |
+
variations = email_gen.generate_multiple_variations(
|
317 |
+
row['name'],
|
318 |
+
row['company'],
|
319 |
+
scraped_info,
|
320 |
+
num_variations=3,
|
321 |
+
tone=tone
|
322 |
+
)
|
323 |
+
|
324 |
+
# Use the first variation as primary
|
325 |
+
subject = variations[0]['subject']
|
326 |
+
email_body = variations[0]['email_body']
|
327 |
+
|
328 |
+
# Store all variations in a formatted way
|
329 |
+
variations_text = "\n\n--- VARIATIONS ---\n"
|
330 |
+
for i, var in enumerate(variations, 1):
|
331 |
+
variations_text += f"\nVariation {i} ({var['tone']}):\n"
|
332 |
+
variations_text += f"Subject: {var['subject']}\n"
|
333 |
+
variations_text += f"Body: {var['email_body']}\n"
|
334 |
+
|
335 |
+
email_body += variations_text
|
336 |
+
|
337 |
+
else:
|
338 |
+
# Generate single email with specified parameters
|
339 |
+
subject, email_body = email_gen.generate_email(
|
340 |
+
row['name'],
|
341 |
+
row['company'],
|
342 |
+
scraped_info,
|
343 |
+
tone=tone,
|
344 |
+
temperature=temperature
|
345 |
+
)
|
346 |
+
|
347 |
+
# Add to processed data
|
348 |
+
processed_data.append({
|
349 |
+
'name': row['name'],
|
350 |
+
'email': row['email'],
|
351 |
+
'company': row['company'],
|
352 |
+
'linkedin_url': row['linkedin_url'],
|
353 |
+
'scraped_info': scraped_info,
|
354 |
+
'generated_subject': subject,
|
355 |
+
'generated_email': email_body,
|
356 |
+
'tone_used': tone,
|
357 |
+
'temperature_used': temperature
|
358 |
+
})
|
359 |
+
|
360 |
+
# Update progress
|
361 |
+
progress_bar.progress((idx + 1) / total_leads)
|
362 |
+
|
363 |
+
# Convert to DataFrame and save
|
364 |
+
result_df = pd.DataFrame(processed_data)
|
365 |
+
st.session_state.processed_data = result_df
|
366 |
+
|
367 |
+
# Save to database
|
368 |
+
save_to_database(result_df)
|
369 |
+
|
370 |
+
status_text.text("β
Processing completed!")
|
371 |
+
st.success("π All leads processed successfully!")
|
372 |
+
|
373 |
+
# Show quality metrics
|
374 |
+
avg_subject_length = result_df['generated_subject'].str.len().mean()
|
375 |
+
avg_body_length = result_df['generated_email'].str.split().str.len().mean()
|
376 |
+
|
377 |
+
st.info(f"π Quality Metrics: Avg subject length: {avg_subject_length:.0f} chars, Avg body length: {avg_body_length:.0f} words")
|
378 |
+
|
379 |
+
except Exception as e:
|
380 |
+
st.error(f"β Error during processing: {str(e)}")
|
381 |
+
status_text.text("β Processing failed")
|
382 |
+
|
383 |
+
if __name__ == "__main__":
|
384 |
+
main()
|