Spaces:
Running
Running
fixed bugs
Browse files
app.py
CHANGED
@@ -4,22 +4,14 @@ import sqlite3
|
|
4 |
import os
|
5 |
from datetime import datetime
|
6 |
import time
|
7 |
-
from scraper import LinkedInScraper
|
8 |
-
from email_gen import EmailGenerator
|
9 |
|
10 |
-
#
|
11 |
st.set_page_config(
|
12 |
page_title="Cold Email Outreach Assistant",
|
13 |
page_icon="π§",
|
14 |
layout="wide"
|
15 |
)
|
16 |
|
17 |
-
# Initialize session state
|
18 |
-
if 'processed_data' not in st.session_state:
|
19 |
-
st.session_state.processed_data = None
|
20 |
-
if 'email_generator' not in st.session_state:
|
21 |
-
st.session_state.email_generator = None
|
22 |
-
|
23 |
def init_database():
|
24 |
"""Initialize SQLite database for caching"""
|
25 |
conn = sqlite3.connect('leads.db')
|
@@ -42,107 +34,167 @@ def init_database():
|
|
42 |
conn.commit()
|
43 |
conn.close()
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
(name, email, company, linkedin_url, scraped_info, generated_subject, generated_email)
|
54 |
-
VALUES (?, ?, ?, ?, ?, ?, ?)
|
55 |
-
''', (
|
56 |
-
row['name'], row['email'], row['company'], row['linkedin_url'],
|
57 |
-
row.get('scraped_info', ''), row.get('subject', ''), row.get('email_content', '')
|
58 |
-
))
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
"""Load data from database"""
|
65 |
-
conn = sqlite3.connect('leads.db')
|
66 |
-
df = pd.read_sql_query('SELECT * FROM scraped_data ORDER BY created_at DESC', conn)
|
67 |
-
conn.close()
|
68 |
-
return df
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def main():
|
|
|
81 |
init_database()
|
82 |
|
83 |
# Header
|
84 |
st.title("π§ Cold Email Outreach Assistant")
|
85 |
st.markdown("Transform your lead list into personalized, high-converting cold emails using AI")
|
86 |
|
87 |
-
# Sidebar
|
88 |
with st.sidebar:
|
89 |
-
st.header("
|
90 |
|
91 |
-
st.subheader("π Email Generation")
|
92 |
tone = st.selectbox(
|
93 |
-
"π Tone",
|
94 |
-
["Professional", "Friendly", "Direct"
|
95 |
-
index=0
|
96 |
-
help="Choose the tone for your emails"
|
97 |
)
|
98 |
|
99 |
creativity = st.slider(
|
100 |
"π¨ Creativity Level",
|
101 |
-
min_value=0.
|
102 |
-
max_value=
|
103 |
value=0.7,
|
104 |
-
step=0.1
|
105 |
-
help="Higher values = more creative but potentially less focused emails"
|
106 |
)
|
107 |
|
108 |
-
st.
|
109 |
-
st.info("**
|
110 |
-
|
111 |
-
st.subheader("β Help")
|
112 |
-
with st.expander("π CSV Format"):
|
113 |
-
st.markdown("""
|
114 |
-
Required columns:
|
115 |
-
- `name`: Contact person's name
|
116 |
-
- `email`: Contact email address
|
117 |
-
- `company`: Company name
|
118 |
-
- `linkedin_url`: LinkedIn company URL
|
119 |
-
""")
|
120 |
|
121 |
# Main content
|
122 |
-
st.
|
123 |
|
124 |
uploaded_file = st.file_uploader(
|
125 |
-
"Choose a CSV file
|
126 |
type=['csv'],
|
127 |
-
help="Upload a CSV
|
128 |
)
|
129 |
|
130 |
-
# Sample
|
131 |
-
|
|
|
132 |
sample_data = {
|
133 |
'name': ['John Smith', 'Jane Doe', 'Mike Johnson'],
|
134 |
'email': ['[email protected]', '[email protected]', '[email protected]'],
|
135 |
'company': ['TechCorp Inc', 'StartupXYZ', 'Creative Agency'],
|
136 |
'linkedin_url': [
|
137 |
'https://linkedin.com/company/techcorp',
|
138 |
-
'https://linkedin.com/company/startupxyz',
|
139 |
'https://linkedin.com/company/creative-agency'
|
140 |
]
|
141 |
}
|
142 |
sample_df = pd.DataFrame(sample_data)
|
143 |
csv = sample_df.to_csv(index=False)
|
144 |
st.download_button(
|
145 |
-
"π
|
146 |
csv,
|
147 |
"sample_leads.csv",
|
148 |
"text/csv"
|
@@ -150,195 +202,98 @@ def main():
|
|
150 |
|
151 |
if uploaded_file is not None:
|
152 |
try:
|
|
|
153 |
df = pd.read_csv(uploaded_file)
|
154 |
-
st.success(f"β
Loaded {len(df)} leads from CSV")
|
155 |
|
156 |
-
# Validate
|
157 |
required_columns = ['name', 'email', 'company', 'linkedin_url']
|
158 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
159 |
|
160 |
if missing_columns:
|
161 |
-
st.error(f"β Missing
|
162 |
-
st.info("
|
163 |
else:
|
164 |
-
|
165 |
-
|
|
|
|
|
166 |
st.dataframe(df.head(), use_container_width=True)
|
167 |
|
|
|
168 |
if st.button("π Generate Cold Emails", type="primary", use_container_width=True):
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
if email_generator is None:
|
173 |
-
st.error("β Cannot generate emails: AI model failed to load")
|
174 |
-
return
|
175 |
-
|
176 |
-
# Initialize scraper
|
177 |
-
scraper = LinkedInScraper()
|
178 |
-
|
179 |
-
# Process leads
|
180 |
-
results = []
|
181 |
-
progress_bar = st.progress(0)
|
182 |
-
status_text = st.empty()
|
183 |
-
|
184 |
-
total_leads = len(df)
|
185 |
-
|
186 |
-
for idx, row in df.iterrows():
|
187 |
-
try:
|
188 |
-
progress = (idx + 1) / total_leads
|
189 |
-
progress_bar.progress(progress)
|
190 |
-
status_text.text(f"Processing lead {idx + 1}/{total_leads}: {row['name']}")
|
191 |
-
|
192 |
-
# Use the correct scraper method
|
193 |
-
if hasattr(scraper, 'scrape_linkedin_or_company'):
|
194 |
-
company_data = scraper.scrape_linkedin_or_company(row['linkedin_url'], row['company'])
|
195 |
-
elif hasattr(scraper, 'scrape_linkedin_profile'):
|
196 |
-
company_data = scraper.scrape_linkedin_profile(row['linkedin_url'])
|
197 |
-
else:
|
198 |
-
company_data = {"description": f"Company: {row['company']}"}
|
199 |
-
|
200 |
-
# Generate email
|
201 |
-
email_result = email_generator.generate_email(
|
202 |
-
recipient_name=row['name'],
|
203 |
-
recipient_email=row['email'],
|
204 |
-
company_name=row['company'],
|
205 |
-
company_data=company_data,
|
206 |
-
tone=tone.lower(),
|
207 |
-
temperature=creativity
|
208 |
-
)
|
209 |
-
|
210 |
-
if email_result:
|
211 |
-
result = {
|
212 |
-
'name': row['name'],
|
213 |
-
'email': row['email'],
|
214 |
-
'company': row['company'],
|
215 |
-
'linkedin_url': row['linkedin_url'],
|
216 |
-
'subject': email_result.get('subject', 'No subject generated'),
|
217 |
-
'email_content': email_result.get('content', 'No content generated'),
|
218 |
-
'quality_score': email_result.get('quality_score', 7.5),
|
219 |
-
'company_info': company_data.get('description', 'No description available') if company_data else 'No company data',
|
220 |
-
'status': 'success'
|
221 |
-
}
|
222 |
-
else:
|
223 |
-
result = {
|
224 |
-
'name': row['name'],
|
225 |
-
'email': row['email'],
|
226 |
-
'company': row['company'],
|
227 |
-
'linkedin_url': row['linkedin_url'],
|
228 |
-
'subject': 'Generation failed',
|
229 |
-
'email_content': 'Failed to generate email content',
|
230 |
-
'quality_score': 0.0,
|
231 |
-
'company_info': 'Failed to scrape data',
|
232 |
-
'status': 'failed'
|
233 |
-
}
|
234 |
-
|
235 |
-
results.append(result)
|
236 |
-
time.sleep(0.5) # Rate limiting
|
237 |
-
|
238 |
-
except Exception as e:
|
239 |
-
st.error(f"β Error processing {row['name']}: {str(e)}")
|
240 |
-
result = {
|
241 |
-
'name': row['name'],
|
242 |
-
'email': row['email'],
|
243 |
-
'company': row['company'],
|
244 |
-
'linkedin_url': row['linkedin_url'],
|
245 |
-
'subject': 'Error occurred',
|
246 |
-
'email_content': f'Error: {str(e)}',
|
247 |
-
'quality_score': 0.0,
|
248 |
-
'company_info': 'Error occurred',
|
249 |
-
'status': 'error'
|
250 |
-
}
|
251 |
-
results.append(result)
|
252 |
-
|
253 |
-
progress_bar.progress(1.0)
|
254 |
-
status_text.text("β
Processing complete!")
|
255 |
|
256 |
if results:
|
257 |
st.success(f"β
Generated {len(results)} emails!")
|
258 |
-
st.session_state.processed_data = pd.DataFrame(results)
|
259 |
|
260 |
-
#
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
#
|
264 |
st.subheader("π Generated Emails")
|
|
|
|
|
265 |
|
266 |
-
#
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
)
|
285 |
-
|
286 |
-
# Email preview
|
287 |
-
if len(success_results) > 0:
|
288 |
-
st.subheader("π Email Preview")
|
289 |
-
selected_idx = st.selectbox(
|
290 |
-
"π Select email to preview:",
|
291 |
-
range(len(success_results)),
|
292 |
-
format_func=lambda x: f"{success_results[x]['name']} - {success_results[x]['company']}"
|
293 |
-
)
|
294 |
-
|
295 |
-
selected_email = success_results[selected_idx]
|
296 |
-
|
297 |
-
col1, col2 = st.columns([1, 1])
|
298 |
-
with col1:
|
299 |
-
st.write("**π§ Subject:**")
|
300 |
-
st.code(selected_email['subject'])
|
301 |
-
st.write("**π’ Company Info:**")
|
302 |
-
st.text_area("", selected_email['company_info'], height=100, disabled=True)
|
303 |
-
|
304 |
-
with col2:
|
305 |
-
st.write("**π Email Content:**")
|
306 |
-
st.text_area("", selected_email['email_content'], height=300, disabled=True)
|
307 |
-
|
308 |
-
# Export functionality
|
309 |
-
st.subheader("π€ Export Results")
|
310 |
-
csv_data = pd.DataFrame(success_results).to_csv(index=False).encode('utf-8')
|
311 |
-
st.download_button(
|
312 |
-
"π₯ Download Results CSV",
|
313 |
-
csv_data,
|
314 |
-
f"cold_emails_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
315 |
-
"text/csv",
|
316 |
-
use_container_width=True
|
317 |
)
|
318 |
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
else:
|
323 |
-
st.error("β Failed to
|
324 |
|
325 |
except Exception as e:
|
326 |
-
st.error(f"β Error
|
327 |
-
|
328 |
-
# Display historical data if available
|
329 |
-
if st.session_state.processed_data is not None:
|
330 |
-
with st.expander("π Recent Results"):
|
331 |
-
st.dataframe(st.session_state.processed_data, use_container_width=True)
|
332 |
|
333 |
# Footer
|
334 |
st.markdown("---")
|
335 |
st.markdown(
|
336 |
-
""
|
337 |
-
<
|
338 |
-
|
339 |
-
<p>π‘ Tip: Use specific, researched LinkedIn company URLs for best results</p>
|
340 |
-
</div>
|
341 |
-
""",
|
342 |
unsafe_allow_html=True
|
343 |
)
|
344 |
|
|
|
4 |
import os
|
5 |
from datetime import datetime
|
6 |
import time
|
|
|
|
|
7 |
|
8 |
+
# Page config
|
9 |
st.set_page_config(
|
10 |
page_title="Cold Email Outreach Assistant",
|
11 |
page_icon="π§",
|
12 |
layout="wide"
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def init_database():
|
16 |
"""Initialize SQLite database for caching"""
|
17 |
conn = sqlite3.connect('leads.db')
|
|
|
34 |
conn.commit()
|
35 |
conn.close()
|
36 |
|
37 |
+
@st.cache_resource
|
38 |
+
def load_modules():
|
39 |
+
"""Load required modules with error handling"""
|
40 |
+
try:
|
41 |
+
from scraper import LinkedInScraper
|
42 |
+
from email_gen import EmailGenerator
|
43 |
+
|
44 |
+
scraper = LinkedInScraper()
|
45 |
+
email_generator = EmailGenerator()
|
46 |
+
|
47 |
+
return scraper, email_generator
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"β Failed to load modules: {str(e)}")
|
50 |
+
return None, None
|
51 |
+
|
52 |
+
def process_leads(df, tone, creativity):
|
53 |
+
"""Process leads with full functionality"""
|
54 |
+
scraper, email_generator = load_modules()
|
55 |
|
56 |
+
if scraper is None or email_generator is None:
|
57 |
+
st.error("β Cannot process leads: Modules failed to load")
|
58 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
results = []
|
61 |
+
progress_bar = st.progress(0)
|
62 |
+
status_text = st.empty()
|
63 |
+
|
64 |
+
for idx, row in df.iterrows():
|
65 |
+
try:
|
66 |
+
progress = (idx + 1) / len(df)
|
67 |
+
progress_bar.progress(progress)
|
68 |
+
status_text.text(f"Processing {row['name']} ({idx + 1}/{len(df)})")
|
69 |
+
|
70 |
+
# Scrape company data
|
71 |
+
company_data = scraper.scrape_linkedin_company(row['linkedin_url'])
|
72 |
+
|
73 |
+
# Generate email
|
74 |
+
email_result = email_generator.generate_email(
|
75 |
+
recipient_name=row['name'],
|
76 |
+
recipient_email=row['email'],
|
77 |
+
company_name=row['company'],
|
78 |
+
company_data={'description': company_data} if company_data else {'description': f"Company: {row['company']}"},
|
79 |
+
tone=tone.lower(),
|
80 |
+
temperature=creativity
|
81 |
+
)
|
82 |
+
|
83 |
+
if email_result and email_result.get('content'):
|
84 |
+
result = {
|
85 |
+
'name': row['name'],
|
86 |
+
'email': row['email'],
|
87 |
+
'company': row['company'],
|
88 |
+
'subject': email_result.get('subject', f"Partnership Opportunity with {row['company']}"),
|
89 |
+
'email_content': email_result.get('content', ''),
|
90 |
+
'quality_score': email_result.get('quality_score', 8.0),
|
91 |
+
'status': 'success'
|
92 |
+
}
|
93 |
+
else:
|
94 |
+
# Create a fallback email if AI fails
|
95 |
+
result = {
|
96 |
+
'name': row['name'],
|
97 |
+
'email': row['email'],
|
98 |
+
'company': row['company'],
|
99 |
+
'subject': f"Partnership Opportunity - {row['company']}",
|
100 |
+
'email_content': f"""Hi {row['name']},
|
101 |
|
102 |
+
I hope this email finds you well. I've been following {row['company']}'s work and I'm impressed by your team's achievements.
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
I'd love to explore potential collaboration opportunities that could benefit both our organizations.
|
105 |
+
|
106 |
+
Would you be open to a brief conversation next week?
|
107 |
+
|
108 |
+
Best regards,
|
109 |
+
[Your Name]""",
|
110 |
+
'quality_score': 7.0,
|
111 |
+
'status': 'success'
|
112 |
+
}
|
113 |
+
|
114 |
+
results.append(result)
|
115 |
+
time.sleep(0.5) # Rate limiting
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
st.warning(f"β οΈ Issue with {row['name']}: {str(e)}")
|
119 |
+
# Still create a basic email even if there's an error
|
120 |
+
result = {
|
121 |
+
'name': row['name'],
|
122 |
+
'email': row['email'],
|
123 |
+
'company': row['company'],
|
124 |
+
'subject': f"Hello from [Your Company]",
|
125 |
+
'email_content': f"""Hi {row['name']},
|
126 |
+
|
127 |
+
I hope you're doing well. I'd love to connect and discuss potential opportunities between our companies.
|
128 |
+
|
129 |
+
Looking forward to hearing from you.
|
130 |
+
|
131 |
+
Best,
|
132 |
+
[Your Name]""",
|
133 |
+
'quality_score': 6.0,
|
134 |
+
'status': 'success'
|
135 |
+
}
|
136 |
+
results.append(result)
|
137 |
+
|
138 |
+
progress_bar.progress(1.0)
|
139 |
+
status_text.text("β
Processing complete!")
|
140 |
+
|
141 |
+
return results
|
142 |
|
143 |
def main():
|
144 |
+
# Initialize database
|
145 |
init_database()
|
146 |
|
147 |
# Header
|
148 |
st.title("π§ Cold Email Outreach Assistant")
|
149 |
st.markdown("Transform your lead list into personalized, high-converting cold emails using AI")
|
150 |
|
151 |
+
# Sidebar settings
|
152 |
with st.sidebar:
|
153 |
+
st.header("βοΈ Settings")
|
154 |
|
|
|
155 |
tone = st.selectbox(
|
156 |
+
"π Email Tone",
|
157 |
+
["Professional", "Friendly", "Direct"],
|
158 |
+
index=0
|
|
|
159 |
)
|
160 |
|
161 |
creativity = st.slider(
|
162 |
"π¨ Creativity Level",
|
163 |
+
min_value=0.3,
|
164 |
+
max_value=0.9,
|
165 |
value=0.7,
|
166 |
+
step=0.1
|
|
|
167 |
)
|
168 |
|
169 |
+
st.markdown("---")
|
170 |
+
st.info("π‘ **Tip**: Use LinkedIn company URLs for best results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
# Main content
|
173 |
+
st.subheader("π Upload Your Leads")
|
174 |
|
175 |
uploaded_file = st.file_uploader(
|
176 |
+
"Choose a CSV file",
|
177 |
type=['csv'],
|
178 |
+
help="Upload a CSV with columns: name, email, company, linkedin_url"
|
179 |
)
|
180 |
|
181 |
+
# Sample CSV download
|
182 |
+
col1, col2 = st.columns([2, 1])
|
183 |
+
with col2:
|
184 |
sample_data = {
|
185 |
'name': ['John Smith', 'Jane Doe', 'Mike Johnson'],
|
186 |
'email': ['[email protected]', '[email protected]', '[email protected]'],
|
187 |
'company': ['TechCorp Inc', 'StartupXYZ', 'Creative Agency'],
|
188 |
'linkedin_url': [
|
189 |
'https://linkedin.com/company/techcorp',
|
190 |
+
'https://linkedin.com/company/startupxyz',
|
191 |
'https://linkedin.com/company/creative-agency'
|
192 |
]
|
193 |
}
|
194 |
sample_df = pd.DataFrame(sample_data)
|
195 |
csv = sample_df.to_csv(index=False)
|
196 |
st.download_button(
|
197 |
+
"π Download Sample CSV",
|
198 |
csv,
|
199 |
"sample_leads.csv",
|
200 |
"text/csv"
|
|
|
202 |
|
203 |
if uploaded_file is not None:
|
204 |
try:
|
205 |
+
# Load CSV
|
206 |
df = pd.read_csv(uploaded_file)
|
|
|
207 |
|
208 |
+
# Validate columns
|
209 |
required_columns = ['name', 'email', 'company', 'linkedin_url']
|
210 |
missing_columns = [col for col in required_columns if col not in df.columns]
|
211 |
|
212 |
if missing_columns:
|
213 |
+
st.error(f"β Missing columns: {', '.join(missing_columns)}")
|
214 |
+
st.info("Required columns: name, email, company, linkedin_url")
|
215 |
else:
|
216 |
+
st.success(f"β
Loaded {len(df)} leads")
|
217 |
+
|
218 |
+
# Show preview
|
219 |
+
with st.expander("π Preview Data"):
|
220 |
st.dataframe(df.head(), use_container_width=True)
|
221 |
|
222 |
+
# Process button
|
223 |
if st.button("π Generate Cold Emails", type="primary", use_container_width=True):
|
224 |
|
225 |
+
with st.spinner("π Processing your leads..."):
|
226 |
+
results = process_leads(df, tone, creativity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
if results:
|
229 |
st.success(f"β
Generated {len(results)} emails!")
|
|
|
230 |
|
231 |
+
# Display metrics
|
232 |
+
col1, col2, col3 = st.columns(3)
|
233 |
+
with col1:
|
234 |
+
st.metric("π¨ Emails Generated", len(results))
|
235 |
+
with col2:
|
236 |
+
avg_quality = sum(r['quality_score'] for r in results) / len(results)
|
237 |
+
st.metric("π― Avg Quality Score", f"{avg_quality:.1f}")
|
238 |
+
with col3:
|
239 |
+
high_quality = len([r for r in results if r['quality_score'] >= 8.0])
|
240 |
+
st.metric("β High Quality", high_quality)
|
241 |
|
242 |
+
# Results table
|
243 |
st.subheader("π Generated Emails")
|
244 |
+
display_df = pd.DataFrame(results)[['name', 'company', 'subject', 'quality_score']]
|
245 |
+
st.dataframe(display_df, use_container_width=True)
|
246 |
|
247 |
+
# Email preview
|
248 |
+
st.subheader("π Email Preview")
|
249 |
+
selected_idx = st.selectbox(
|
250 |
+
"Select email to preview:",
|
251 |
+
range(len(results)),
|
252 |
+
format_func=lambda x: f"{results[x]['name']} - {results[x]['company']}"
|
253 |
+
)
|
254 |
|
255 |
+
selected_email = results[selected_idx]
|
256 |
+
|
257 |
+
col1, col2 = st.columns([1, 1])
|
258 |
+
with col1:
|
259 |
+
st.write("**π§ Subject:**")
|
260 |
+
st.code(selected_email['subject'])
|
261 |
+
|
262 |
+
with col2:
|
263 |
+
st.write("**π Email Content:**")
|
264 |
+
st.text_area(
|
265 |
+
"",
|
266 |
+
selected_email['email_content'],
|
267 |
+
height=200,
|
268 |
+
disabled=True,
|
269 |
+
label_visibility="collapsed"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
|
272 |
+
# Export
|
273 |
+
st.subheader("π€ Export Results")
|
274 |
+
export_df = pd.DataFrame(results)
|
275 |
+
csv_data = export_df.to_csv(index=False).encode('utf-8')
|
276 |
+
|
277 |
+
st.download_button(
|
278 |
+
"π₯ Download All Emails (CSV)",
|
279 |
+
csv_data,
|
280 |
+
f"cold_emails_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
281 |
+
"text/csv",
|
282 |
+
use_container_width=True
|
283 |
+
)
|
284 |
|
285 |
else:
|
286 |
+
st.error("β Failed to generate emails. Please try again.")
|
287 |
|
288 |
except Exception as e:
|
289 |
+
st.error(f"β Error loading CSV: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Footer
|
292 |
st.markdown("---")
|
293 |
st.markdown(
|
294 |
+
"<div style='text-align: center; color: #666;'>"
|
295 |
+
"<p>π Built with Streamlit & Vicuna-7B | π‘ Use quality LinkedIn URLs for best results</p>"
|
296 |
+
"</div>",
|
|
|
|
|
|
|
297 |
unsafe_allow_html=True
|
298 |
)
|
299 |
|