Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,47 @@
|
|
|
|
|
|
|
|
|
|
1 |
import tensorflow as tf
|
2 |
-
from transformers import BertTokenizer
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
model = tf.keras.models.load_model("rnn_Bi.h5")
|
9 |
print("✅ Model loaded successfully!")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
print(f"Prediction: {prediction}")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import BertTokenizer, AutoModel
|
5 |
import tensorflow as tf
|
|
|
6 |
|
7 |
+
# Load tokenizer and BERT model for embeddings extraction
|
8 |
+
model_name = "aubmindlab/bert-base-arabertv02"
|
9 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
10 |
+
bert_model = AutoModel.from_pretrained(model_name)
|
11 |
+
bert_model.eval()
|
12 |
|
13 |
+
# Load your trained RNN model
|
14 |
model = tf.keras.models.load_model("rnn_Bi.h5")
|
15 |
print("✅ Model loaded successfully!")
|
16 |
|
17 |
+
def get_bert_embedding(text, max_length=100):
|
18 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = bert_model(**inputs)
|
21 |
+
# Use CLS token embedding as sentence embedding
|
22 |
+
embedding = outputs.last_hidden_state[:, 0, :].numpy()
|
23 |
+
embedding = embedding.reshape(1, 1, 768) # shape (1, 1, 768)
|
24 |
+
return embedding
|
25 |
+
|
26 |
+
def predict_sentiment(text):
|
27 |
+
embedding = get_bert_embedding(text)
|
28 |
+
pred = model.predict(embedding)[0][0]
|
29 |
+
label = "Positive" if pred > 0.5 else "Negative"
|
30 |
+
confidence = pred if pred > 0.5 else 1 - pred
|
31 |
+
return label, f"Confidence: {confidence:.2f}"
|
32 |
+
|
33 |
+
# Build Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=predict_sentiment,
|
36 |
+
inputs=gr.Textbox(lines=2, placeholder="اكتب الجملة هنا..."),
|
37 |
+
outputs=[
|
38 |
+
gr.Label(num_top_classes=2, label="Sentiment"),
|
39 |
+
gr.Textbox(label="Confidence Score")
|
40 |
+
],
|
41 |
+
title="Arabic Sentiment Analysis",
|
42 |
+
description="اكتب جملة لتحليل المشاعر (إيجابي أو سلبي)",
|
43 |
+
theme="default"
|
44 |
)
|
45 |
|
46 |
+
if __name__ == "__main__":
|
47 |
+
iface.launch()
|
|