Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 6 |
+
import pickle
|
| 7 |
+
|
| 8 |
+
# -------- تحميل النموذج --------
|
| 9 |
+
|
| 10 |
+
# تحميل النموذج من Hugging Face
|
| 11 |
+
model_path = hf_hub_download(repo_id="ahmedyoussef1/Asentement_analysis_rnn", filename="rnn_Bi.h5")
|
| 12 |
+
model = tf.keras.models.load_model(model_path)
|
| 13 |
+
|
| 14 |
+
# تحميل tokenizer
|
| 15 |
+
tokenizer_path = hf_hub_download(repo_id="ahmedyoussef1/sentiment_rnn", filename="tokenizer.pkl")
|
| 16 |
+
with open(tokenizer_path, 'rb') as f:
|
| 17 |
+
tokenizer = pickle.load(f)
|
| 18 |
+
|
| 19 |
+
# طول التسلسل (من وقت التدريب)
|
| 20 |
+
max_len = 100
|
| 21 |
+
|
| 22 |
+
# أسماء التصنيفات
|
| 23 |
+
class_names = ['Negative', 'Positive']
|
| 24 |
+
|
| 25 |
+
# -------- دالة التنبؤ --------
|
| 26 |
+
def predict_sentiment(text):
|
| 27 |
+
sequence = tokenizer.texts_to_sequences([text])
|
| 28 |
+
padded = pad_sequences(sequence, maxlen=max_len, padding='post')
|
| 29 |
+
|
| 30 |
+
prediction = model.predict(padded)[0][0] # لأنه binary: توقع قيمة واحدة بين 0 و 1
|
| 31 |
+
|
| 32 |
+
# نسبة الاحتمال
|
| 33 |
+
result = {
|
| 34 |
+
"Negative": float(1 - prediction),
|
| 35 |
+
"Positive": float(prediction)
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
return result
|
| 39 |
+
|
| 40 |
+
# -------- واجهة Gradio --------
|
| 41 |
+
interface = gr.Interface(
|
| 42 |
+
fn=predict_sentiment,
|
| 43 |
+
inputs=gr.Textbox(lines=3, placeholder="اكتب جملة لتحليل المشاعر..."),
|
| 44 |
+
outputs=gr.Label(num_top_classes=2),
|
| 45 |
+
title="تحليل المشاعر باستخدام Bi-RNN",
|
| 46 |
+
description="ادخل جملة وسيتم تصنيفها كـ مشاعر إيجابية أو سلبية باستخدام نموذج Bi-RNN.",
|
| 47 |
+
allow_flagging="never"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
interface.launch()
|