Update app.py
Browse files
app.py
CHANGED
|
@@ -9,25 +9,20 @@ tokenizer = AutoTokenizer.from_pretrained("./")
|
|
| 9 |
labels = ["Negative", "Positive"]
|
| 10 |
|
| 11 |
def classify_sentiment(text):
|
| 12 |
-
ahmedlofti= text
|
| 13 |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 14 |
outputs = model(**inputs)
|
| 15 |
prediction = tf.argmax(outputs.logits, axis=1).numpy()[0]
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# Return both processed message and classification
|
| 19 |
-
return ahmedlofti, sentiment
|
| 20 |
|
| 21 |
with gr.Blocks() as demo:
|
| 22 |
gr.Markdown("# Fas7ni Feedbacks\nClassify your feedback as positive or negative!")
|
| 23 |
|
| 24 |
with gr.Row():
|
| 25 |
msg = gr.Textbox(placeholder="Write your comment or feedback here...", label="Enter Feedback")
|
| 26 |
-
|
| 27 |
-
sentiment = gr.Textbox(label="Sentiment")
|
| 28 |
|
| 29 |
submit = gr.Button("Classify")
|
| 30 |
|
| 31 |
-
submit.click(fn=classify_sentiment, inputs=msg, outputs=
|
| 32 |
|
| 33 |
demo.launch()
|
|
|
|
| 9 |
labels = ["Negative", "Positive"]
|
| 10 |
|
| 11 |
def classify_sentiment(text):
|
|
|
|
| 12 |
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 13 |
outputs = model(**inputs)
|
| 14 |
prediction = tf.argmax(outputs.logits, axis=1).numpy()[0]
|
| 15 |
+
return labels[prediction].lower()
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
with gr.Blocks() as demo:
|
| 18 |
gr.Markdown("# Fas7ni Feedbacks\nClassify your feedback as positive or negative!")
|
| 19 |
|
| 20 |
with gr.Row():
|
| 21 |
msg = gr.Textbox(placeholder="Write your comment or feedback here...", label="Enter Feedback")
|
| 22 |
+
output = gr.Textbox(label="Sentiment")
|
|
|
|
| 23 |
|
| 24 |
submit = gr.Button("Classify")
|
| 25 |
|
| 26 |
+
submit.click(fn=classify_sentiment, inputs=msg, outputs=output)
|
| 27 |
|
| 28 |
demo.launch()
|