File size: 2,232 Bytes
04c250d
 
 
 
 
 
 
293d0d2
 
04c250d
4aa9e1f
 
 
 
 
 
 
293d0d2
4aa9e1f
293d0d2
04c250d
 
 
 
293d0d2
4aa9e1f
 
293d0d2
4aa9e1f
 
 
 
04c250d
293d0d2
04c250d
 
4aa9e1f
293d0d2
4aa9e1f
04c250d
4aa9e1f
 
 
04c250d
4aa9e1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gradio as gr
import time
import torch
import scipy.io.wavfile
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none

tagen = "https://huggingface.co/wietsedv/tacotron2-gronings/resolve/main/tts_ljspeech_finetune_tacotron2.v5_train.loss.ave.zip" 
vocoder_tagen = "parallel_wavegan/ljspeech_parallel_wavegan.v3" 

text2speechen = Text2Speech.from_pretrained(
    model_tag=str_or_none(tagen),
    vocoder_tag=str_or_none(vocoder_tagen),
    device="cpu",
    threshold=0.5,
    minlenratio=0.0,
    maxlenratio=10.0,
    use_att_constraint=True,
    backward_window=1,
    forward_window=4,
)

def inference(text,lang):
  with torch.no_grad():
      if lang == "gronings":
          wav = text2speechen(text)["wav"]
          scipy.io.wavfile.write("out.wav",text2speechen.fs , wav.view(-1).cpu().numpy())
         
  return  "out.wav"
title = "ESPnet2-TTS"
description = "Gradio demo for ESPnet2-TTS: Extending the Edge of TTS Research. To use it, simply add your audio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2110.07840' target='_blank'>ESPnet2-TTS: Extending the Edge of TTS Research</a> | <a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"

examples=[['This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results',"english"]]

gr.Interface(
    inference, 
    [gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["gronings"], type="value", default="gronings", label="language")], 
    gr.outputs.Audio(type="file", label="Output"),
    title=title,
    description=description,
    article=article,
    enable_queue=True,
    examples=examples
    ).launch(debug=True)