Spaces:
Build error
Build error
File size: 1,124 Bytes
04c250d f6fdf7a 04c250d f6fdf7a be5bfc8 f6fdf7a 04c250d 293d0d2 f6fdf7a d3fe331 04c250d f6fdf7a 04c250d f6fdf7a cc8e5e7 f6fdf7a 04c250d f6fdf7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import time
import urllib.request
from pathlib import Path
import os
import torch
import scipy.io.wavfile
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none
gos_text2speech = Text2Speech.from_pretrained(
model_file="https://huggingface.co/ahnafsamin/FastSpeech2-gronings/blob/main/train.loss.ave_5best.pth",
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3",
)
def inference(text,lang):
with torch.no_grad():
if lang == "gronings":
wav = gos_text2speech(text)["wav"]
scipy.io.wavfile.write("out.wav", gos_text2speech.fs , wav.view(-1).cpu().numpy())
return "out.wav", "out.wav"
title = "GroTTS"
examples = [
['Ze gingen mit klas noar waddendiek, over en deur bragel lopen.', 'gronings']
]
gr.Interface(
inference,
[gr.inputs.Textbox(label="input text", lines=3), gr.inputs.Radio(choices=["gronings"], type="value", default="gronings", label="language")],
[gr.outputs.Audio(type="file", label="Output"), gr.outputs.File()],
title=title,
examples=examples
).launch(enable_queue=True)
|